
Queries and Views of Programs

. Using a Relational Database System

1-fark A. Linton

Computer Science Division
University of California, Berkeley

Berkeley, CA 94720

December 1983

Submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy in Computer Science
in the Graduate Division of

the University of California, Berkeley.

Copyright© 1983 by Mark A. Linton

Research supported by NSF grant MCS-8010686, a State of California MICRO

grant, and Defense Advance Research Projects Agency (DoD) Arpa Order No.

4031 monitored by Naval Electronic System Command under Contract No.

N00039-82-C-0235.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
DEC 1983 2. REPORT TYPE

3. DATES COVERED
 00-00-1983 to 00-00-1983

4. TITLE AND SUBTITLE
Queries and Views of Programs Using a Relational Database System

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Large software systems are expensive to develop and maintain. A significant amount of programmer
activity in understanding, changing, and debugging these systems is information management. To support
these activities more directly, we have designed a programming environment, called OMEGA, that
provides powerful mechanisms for accessing and displaying the information in a large software system.
OMEGA uses successful ideas from existing programming environments while trying to correct
deficiencies. The major deficiency in these systems is that programmers can only view and manipulate a
single logical representation of programs. To support multiple representations, OMEGA uses a relational
database system to manage all program information. Using a database system provides a powerful
mechanism for efficient access to a variety of cross-sections of program information, as well as providing
traditional database facilities such as concurrency control, data integrity, and crash recovery. The user
interface to OMEGA separates input specification from output display, relies on pointing rather than
typing, and exploits interaction in semantic analysis to detect many errors as soon as they are made. By
eliminating the traditional textual interface to programs, OMEGA also allows the unification of the
different abstraction mechanisms present in traditional programming environments. We have
experimented with the ideas in OMEGA by designing a relational schema for software written in a
particular programming language, and by implementing a program that transfers existing programs,
stored as text, into a database managed by an "off-the-shelf" database system. A prototype visual interface
to the program database has also been implemented. The results of this thesis are new models of program
representation and user interaction for software development systems. The model of program
representation can be expressed in the relational data model, and software can therefore be manipulated
easily and powerfully using relational calculus. Our experimental implementation demonstrates the
feasibility of using a relational database system, and provides insights into potential problems and how
they might be solved.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

102

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

ABSTRACT

Large software systems are expensive to develop and maintain. A

significant amount of programmer activity in understanding, changing, and

debugging these systems is information management. To support these activities

more directly, we have designed a programming environment, called OMEGA,

that provides powerful mechanisms for accessing and displaying the information

in a large software system.

OMEGA uses successful ideas from existing programming environments

while trying to correct deficiencies. The major deficiency in these systems is that

programmers can only view and manipulate a single logical representation of pro

grams.

To support multiple representations, OMEGA uses a relational database

system to manage all program information. Using a database system provides a

powerful mechanism for efficient access to a variety of cross-sections of program

information, as well as providing traditional database facilities such as con

currency control, data integrity, and crash recovery.

The user interface to OMEGA separates input specification from output

display, relies on pointing rather than typing, and exploits interaction in semantic

analysis to detect many errors as soon as they are made. By eliminating the

traditional textual interface to programs, O~fEGA also allo,vs the unification of

the different abstraction mechanisms present in traditional programming environ

ments.

We have experimented with the ideas in OMEGA by designing a relational

schema for software written in a particular programming language, and by imple

menting a program that transfers existing programs, stored as text, into a data

base managed by an "off-the-shelf" database system. A prototype visual inter

face to the program database has also been implemented.

The results of this thesis are new models of program representation and

user interaction for software development systems. The model of program

representation can be expressed in the relational data model, and software ·can

therefore be manipulated easily and powerfully using relational calculus. Our

experimental implementation demonstrates the feasibility of using a relational

database system, and provides insights into potential problems and how they

might be solved.

Acknowledgments

I am very grateful to Mike Powell, my advisor, for his support and guidance----- -

throughout this work. His tremendous creative and analytical abilities have

taught me more than I can show with this dissertation; his willingness to listen,

his patience to wait for me to understand his ideas, and his friendship has made

working with him an enjoyable as well as educational experience.

I am also very grateful to Larry Rowe and Lucien LeCam, the other

members of my committee, for their time and helpful comments on this disserta

tion; to Mike Stonebraker, for his help and advice on how to approach the data

base issues discussed in Chapter 3; and to everyone else at Berkeley, particularly

the other members of the OSMOSIS group, for providing a stimulating and

friendly environment in which to work.

I am lucky to have had for the support of my friends and family who,

throughout this work, and throughout my life, have believed in me and my abili

ties. My special thanks to my parents who have given me their love and support

no matter how far away I have ;;een.

Lastly, and most importantly, I am thankful for the love and support of

Susan Ellis, my wife, who has helped me both technically and spiritually

throughout this work, and whose companionship and terrific personality makes

my life a happy one.

1. The Software Beast

1.1 Introduction
1.2 OMEGA Philosophy
1.3 Goals and Non-goals
1.4 Results

2. Historical Background

2.1 Introduction

Table of Contents

2.2 Communication Model
2.3 Individual Systems

2.3.1 UNIX
2.3.2 Interlisp
2.3.3 Smalltalk
2.3.4 Cornell Program Synthesizer

2.3.5 Gandalf / IPE
2.3.6 Programmer's Apprentice

2.4 Conclusions

3. The Program Database

3.1 Introduction
3.2 Semantic Data Model
3.3 Picking a General-Purpose Database System

3.4 Storing Program Information
3.4.1 Managing Recursive Data Structures

3.4.2 Tuple References
3.4.3 Multi-relation Tuple References

3.4.4 Transitive Closure Queries

3.5 Execution Information
3.6 Monitoring Execution
3.7 Displaying Information
3.8 Name Resolution
3.9 Version and Configuration Management

3.10 Conclusions

4. The User Interface

4.1 Introduction
4.2 Goals
4.3 Mechanics of Interaction

4.3.1 One Picture is Worth a Thousand Keywords

4.3.2 It Is Polite To Point

ii

1

1
2
4
5

6

6
7
8
8

11
12
13
14
15
15

17

lZ
18
19
20
24
25
26
27
28
30
32
33
35
37

38

38
39
40
40
42

4.3.3 What Is In A Name?
4.3.4 Rome \Vas Not Built In A Day
4.3.5 Screen Management

4.4 Abstractions
4.5 Defining and Using Abstractions
4.6 Semantic Error Detection
4.7 A Bigger Example
4.8 Conclusions

5. Experimental Implementation

5.1 Introduction
5.2 Approach
5.3 Storing Program Information in an INGRES Database

5.3.1 Predefined Views
5.3.2 Representation of Pictographs
5.3.3 Semantic Constraints

5.4 Parsing Model
5.4.1 Interfacing to INGRES
5.4.2 Name Resolution
5.4.3 Current Status

5.5 Viewing Programs from the Database
5.5.1 Database Interface

5.5.1.1 Improving Performance
5.5.1.2 Generalizing Peruse

5.5.2 Display Management
5.5.3 Input Commands
5.5.4 Current Status

5.6 Performance
5.6.1 Execution Time
5.6.2 Storage Requirements
5.6.3 Analysis

5.7 Conclusions

6. Conclusions and Future Directions

6.1 The Software Beast (reprise)
6.2 Summary of \Vork
6.3 Future Directions

6.3.1 Database Interface
6.3.2 Execution and Debugging
6.3.3 Graphical Interface
6.3.4 Application to Other Environments

6.4 Concluding Remarks

lll

43
45
46
48
49
50
51
55

57

57
58
59
63
63
~

65
66
66
68
68
68
69
70
71
73
74
74
74
75
76
77

79

79
79
80
81
81
82
82
83

In the master's chambers
they gathered for the feast.

Chapter 1

The Software Beast

They stab it with their steely knives,
but they just can't k£/l the beast.

- from the song "Hotel California" by The Eagles

1.1 Introduction

Millions of lines of software are written, executed, and debugged every year.

The cost of producing this software is a large percentage of the cost of using com

puters today, and this percentage is increasing as hardware costs drop. That

software is expensive to develop and maintain is accepted, but why it is so costly

and how to reduce these costs is still an issue.

One reason why software is so expensive is that the amount of information

in programs today is far too large for one person to absorb and comprehend.

Furthermore, collections of programs and pieces of programs are combined

together into software systems, and the interdependencies between these various

pieces are complex.

As software systems evolve, they continually grow larger in order to add

functionality, improve reliability, and enhance performance. This growth

increases both the amount of information in the system and the complexity of the

interconnections of the pieces. Making a change to a software system requires an

understanding of how the part being changed fits into the system.

With the use of computers growing, more and more programs are being

built for both existing and new applications. Paradoxically, less and less new

software is actually being created; most of the code written today replicates or

nearly replicates the function of existing programs. To reduce the cost of

software then, programmers need to be able to adapt existing software to new

requirements and to be able to understand the interdependencies of the pieces of

a software system.

A major part of understanding is simply seeing the information relevant to

what one is trying to understand. In this thesis, we present the design of a pro

gramming system, called OMEGA, that provides mechanisms for seeing and

manipulating software in a much more powerful and general way than current

systems. Instead of the traditional linear or hierarchical view, we use recent ideas

in database systems to provide multiple relational views of the information in a

software systPm. The relational model provides very powerful operations for

2

describing portions of a database of information. By using it we can give pro

grammers the opportunity to view ·and change a wide variety of cross-sections of

a software system.

In the remainder of this chapter~ we present the philosophy behind the

design of OMEGA, discuss the goals and non-goals of this thesis, and present the

basic results. In Chapter 2, these ideas are put in perspective by looking at other

programming systems.

Chapter 3 presents our model of program information and how it can be

supported by an existing database system; in Chapter 4 we show how this infor

mation is communicated between programmer and machine. Chapter 5 describes

how we have investigated the feasibility and practicality of our ideas. A com

plete implementation of OMEGA was impractical for the purposes of a disserta

tion. Consequently, we focused on the details of the database interface and the

basic features of the user interface. In Chapter 6 we summarize our work, sug

gest areas for future research, and draw some conclusions from the principles we

have developed.

1.2 OMEGA Philosophy

The approach to constructing a program in a traditional system, pictured in

Figure 1.1, begins with a programmer having an idea of an algorithm to imple

ment. An implementation for the algorithm (or part of the algorithm) often

already exists, but usually the programmer has no way of finding it, or else what

he or she can find does not function as desired for the particular application.

To create a program that can be executed, the programmer "encrypts" the

programming constructs that represent the algorithm (procedures, statements,

variables, etc.) into a particular programming language. The resulting "crypto

text" is transmitted over an unreliable "wire" (i.e., fingers) to the system, which

uses a compiler to try to "decrypt" the code and determine the intended combi

nation of programming constructs.

Primarily because of the textual medium through which programs are

transmitted, programmers must manipulate software at a physical rather than

logical level. The concepts of files, lines, and characters have nothing to do with

software, yet many programming environments force users to communicate in

those terms.

In OMEGA, the programmer communicates in software terms such as pro

cedures, statements, and versions. Instead of being entered as independent enti

ties, programs are constructed out of existing software parts. If parts are required

that are slightly different from existing ones, the existing parts are modified or

new variations of them are created. Maintenance also requires looking at and

modifying existing parts of software. Therefore, in OMEGA the activities of pro

gram construction and maintenance are identical.

3

if (x==i) then l

(cond ((eq x i) (

Fi~. 1.1: Tradition a I pr0grqmmr:-r-rnarhiue c·ommunieation.

4

For example, suppose one wished to create a compiler for the programming

language Adat [Ada 82]. Since the combined language features implemented by

existing compilers cover at least g5% of the features of Ada, one theoretically

should be able to build an Ada compiler quickly from parts of existing compilers.

Furthermore, these parts have been debugged and tested, so they are likely to be

more reliable than parts built from scratch.

Unfortunately, existing compilers are hard to understand, hard to interface

to (even well-defined pieces such as code generators), and it is difficult to con

tinue to share common parts over time. Consequently, the new compiler must be

built at the same high price as the previous compiler and will require the sub

stantial amount of maintenance that all large programs need. The new compiler

is another victim of the software "beast" that strikes all large software projects

today and consumes programmers, managers, and computing resources.

A single weapon, such as a new language or methodology, cannot stop the

software beast. The design of OMEGA therefore combines ideas from program

ming languages and software methodologies with principles of database manage

ment and graphics-oriented user interfaces.

The most unusual aspects of OMEGA are its use and extension of current

database ideas and its simple, pointing-based user interface. In focusing on these

aspects we have left unspecified certain decisions, such as the pa-rticular language

semantics built into the system.

1.3 Goals and Non-goals

The dream of being able to quickly build a reliable Ada compiler out of old

compilers and to have fixes in the old compilers reflected in the new compiler

exemplifies the fundamental goals of the O!vfEGA system. This thesis is only

part of the work necessary to achieve those goals. We did not try to implement

a complete system nor try to measure the effect this kind of system would have

on programmer productivity.

We can only argue qualitatively that the activities of software construction

and maintenance ought to be unified, and that a system that facilitates reuse of

existing software will substantially improve programmer productivity. The pur

pose of this thesis is to solve some of the problems that lie within this framework

through the design and experimental implementation of a programming system

that provides powerful mechanisms for viewing and manipulating software.

We are not concerned here with the time and space costs of OMEGA. In

the five years or so it may take to build a production OMEGA system, comput

ing cycles and storage will become at least one order of magnitude cheaper than

they are now. Also, it is usually easier to make a general solution fast and small

than it is to make a fast and small solution general.

tAda is a registered trademark of the Ada Joint Program Office, U.S. Government.

5

Nonetheless, it is important to make sure a design does not rely on any

inherently expensive components. "In the case of OMEGA the most important

question about performance is whether the mechanism that is used to manipulate

software (a relational database system) is too expensive. Another goal of this

thesis, then, is to implement enough of OMEGA to discover performance prob

lems and determine how they might be overcome.

1.4 Results

This work contributes a new model of program representation and user

interaction for software development systems. The representation of program

information to the user provides powerful operations on arbitrary cross-sections

of programs. We show that this model can be described with relational calculus,

and therefore that program information can be managed by a relational database

system.

Our model of user interaction takes advantage of a relatively recent style of

entering information into a computer- pointing. Pointing is a quick, precise way

of identifying and rearranging objects that removes the need for parsing and

name resolution. It therefore allows the facilities of various programming

languages to be unified and extended. Programs can be displayed in the form

desired by the user rather than in a form required by a compiler.

The model of program representation has been explored further by actually

implementing an interface to the relational database system 1!\GRES [Stone

braker, Wong, and Kreps 76]. A schema for a particular programming language,

called Model [Morris 80], has been designed and a program written that translates

existing Model program text and stores it in an INGRES database. Another pro

gram has been written that provides views and allows updates of the information

in the database.

The implementation demonstrates the feasibility of using a relational data

base system and therefore the practicality of our theoretical model of program

representation. It also provides an insight into potential performance problems

and how they might be solved.

Chapter 2

Historical Perspective

I tip my hat to the new constitution,
take a bow for the new revolution,
smile and grin at the change all around,
pick up my guitar and play
just like yesterday,
then I get on my knees and pray
we don't get fooled again.

-from the song "Won't Get Fooled Again" by The Who.

2.1 Introduction

6

In designing OMEGA we have tried to use and generalize the positive

aspects of existing programming systems while avoiding ·the negative ones. For

example, lnterlisp [Teitelman and Masinter 81] is an integrated environment; it

has a single, consistent user interface and a uniform representation of programs.

These are clearly good attributes for a programming system, therefore we

designed OMEGA to be integrated. However, unlike Interlisp, which is centered

around a list-oriented database, OMEGA is based on relations, thus providing

more powerful and efficient operations.

Ideally, whether a feature is good or bad should be measured by the quanti

tative effect it has on programmer productivity. Unfortunately, not only is this

effect hard to measure, it is difficult to measure productivity itself. The tradi

tional measure of programmer productivity is the number of lines of code written.

However, this number is misleading when building upon existing software rather

than writing new software.

For example, a programmer who adds or changes 100 lines in an existing

10,000 line program will produce a working version much faster than someone

who writes the 10,000 line program from scratch, but much slower than someone

who writes a 100 line program from scratch. The larger program performs much

more than the 100 line program, so the programmer who modifies the existing

software should be considered more productive.

Counting the number of lines modified is not an accurate measure either.

For example, changing the name of a variable changes every line in which the

variable appears, but is not as difficult or useful as a more substantive change

that involves the same number of lines.

7

Even if it were feasible to measure the effect of a particular system on pro

grammer productivity, it is very difficult to construct an experiment that com

pares existing systems while factoring out their idiosyncrasies. We therefore turn

to a qualitative analysis.

To analyze and compare programming systems, it is necessary to use a

common model of the facilities that the systems provide. Systems as different as

UNIXt [Kernighan and Mashey 81) and Smalltalk [Goldberg and Robson 83] can

not be compared by comparing respective editors, languages, or debuggers. A

more general ~ode! is needed to take into account things such as the fact that

Smalltalk provides an integrated environment whereas U:NlX does not.

To provide the necessary generality and completeness, we model program

ming as a communication process. In the remainder of this chapter, we describe

this model and then use it as a framework for discussing the programming sys

tems that have influenced the design of OMEGA.

2.2 Communication Model

Programming is a communication activity between programmer and com

puter (as well as among programmers). As such, it has the three basic com

ponents:

• medium,

• protocol, and

• data.

The medium of communication is the physical connection, e.g., punched

cards, printer, terminal, mouse, or voice. The protocol is the way data is

transmitted through the medium to and from the machine. For the programmer,

this includes both how individual commands are specified and the order in which

commands are applied to perform a particular task. For the system, the protocol

determines how commands and operands are interpreted, and where responses are

sent. In a screen-oriented system, for example, the protocol determines where on

the screen the response to a command is displayed.

The final component of communication is the data that is exchanged.

There are two important aspects of the data: the kinds of objects that are com

municated, and the operations that can be performed on the objects. The kinds

of objects manipulated through a text editor, for example, are files, lines, words,

and characters; typical operations allowed include insert, delete, and replace.

Programmers manipulate both objects associated with the definition of a

program, called "program" or "static" data, and objects associated with its exe

cution, called "runtime" or "dynamic" data. Runtime objects are represented

fUNIX is a registered trademark of Bell Laboratories.

8

and manipulated m terms of the ~nderlying machine on which the program 1s

executing.

Objects may have constraints placed on their values to ensure that they are

meaningful. For example, the left-hand side of an assignment statement can be a

complicated expression, but it must be an expression that will correspond to a

storage location when the program is executing.

2.3 Individual Systems

Using our communication model of programming, we now turn to a discus

sion of the particular systems that have influenced OMEGA. For each system,

we present an overview followed by an analysis of the features that we have tried

to include or avoid in the design of OMEGA. This analysis is in terms of the

communication model, thereby allowing us to focus on the fundamental elements

of each system and avoid a myriad of specific details.

2.3.1 UNIX

The UNIX programming environmentt is one of the most popular tool-based

systems. A tool-based system provides a number of individual programs that

each aid some part of the overall task. Ideally, each tool is small enough that it

is relatively uncomplicated to build and use, while the combination of tools pro

vides substantial power for developing and maintaining software.

The nucleus of a tool-based programming system consists of an editor for

entering and modifying programs, a compiler for translating programs into an

executable form, and a command interpreter for executing programs (including

the editor and compiler). In addition, UNLX provides tools for building a

configuration of a system, managing versions of modules in a system, interactive

debugging, and indexing symbol definitions. Figure 2.1 shows the organization of

the U~1X environment.

One of the advantages of the tool-based approach is that tools can easily be

added to the system and users can build tools for their own particular needs.

This ability is facilitated by the pipe and file redirection operations provided by

the U:N1X command interpreter that allow tools to be easily combined into new

tools without modification. Thus, programmers can use existing programs

instead of re-implementing them, one of our main goals for O:tviEGA.

Despite these desirable features, there are several problems with tool-·based

systems in general and U~1X in particular. First, if more than one tool is

interactive (e.g., editor and command interpreter) then there is more than one

user interface. Not only does this replication lead to varieties and inconsistencies

that the user must remember, but each tool must have a command line scanner,

parser, and execution processor. For example, the UNIX command interpreter

tWe do not distinguish between the UNIX environment and the programmer's workbench

(PWB/UNIX) [Ivie 77].

,

configuration
descriptions

{makefile)
..

, , ,

.. ..

, , ,

..

source files

,,'L----~-----

.. .. object files

symbolic info

Fig. 2.1: Unix information and took

9

10

expands special characters in filenames to match files the user can access. The

U:NlX editor vi [Joy 79] duplicates some of the matching facilities in processing

commands that involve filenames, but the facilities are not completely consistent

with those provided by the command interpreter.

In terms of the communication model presented earlier in this chapter, the

problem is that the user needs different protocols to perform the same operation

in different contexts, and may not even be able to perform the operation in some

contexts. The programming system must either implement these multiple, redun

dant protocols or not consistently provide access to all the operations.

The most important problem with UNIX is that the objects that a pro

grammer enters and manipulates are at a physicallevel, namely text. There are

several levels of text (files, lines, words, characters), but any correspondence

between these objects and programming entities such as modules, statements, or

variables is only by convention, and is not enforced by the system. Since only

text is stored, semantic interpretation of the information (e.g., the binding of

names and propagation of types for expressions) is expensive.

Historically, text was a natural and compaet way to represent programs

communicated through the medium of punched cards. As Figure 2.1 shows,

UNIX has taken advantage of the availability of on-line storage by augmenting

the program text with configuration files, symbol definition indices, and

differential files for restoring previous versions. Except for information about pre

vious versions, this data is already available from the program text. It is repli

cated to significantly improve the performance of the corresponding tool. For

example, the configuration file contains dependency information that can be

determined from the program text, but it is too expensive to have the system

builder analyze all the program text.

The problem here is not that the information is replicated; this is a stan

dard technique for improving performance. The problem is that usually the user

has to maintain the redundant information by hand because it is too inefficient to

have it continually recomputed.

In summary, UNIX is a popular tool-based environment with a simple,

text-oriented representation of data and a powerful command interpreter. The

environment is easy to extend and existing tools can be combined in flexible ways

to perform new tasks. However, the tool-based approach leads to a proliferation

of user interfaces (protocols). Representing programs as text provides a single,

linear view of programs, which makes it difficult for tools to manipulate small

portions of programs. Consequently, these portions are often replicated and

therefore likely to become inconsistent.

11

2.3.2 Interlisp

In contrast to the tool-based approach of UNIX, lnterlisp provides an

integrated environment. All the pieces of the system share a common user inter

face and a common representation for programs and data. Facilities such as

error recovery for misspelled words and the repeating of previous commands can

be used when editing, debugging, or executing programs.

Like UNIX, the facilities of Interlisp can be extended through the

modification of an existing piece of the system. Since .Interlisp already contains

many interconnected pieces, there is a package called Masterscope that helps pro

grammers see the interconnections between modules.

Masterscope has an English-like interface for questions about the structure

of a program. For example, to find the functions that use the variable x one

might type

(who uses x)

Masterscope also works in conjunction with the Interlisp editor. For exam

ple, one can ask to edit functions that use the variable x or satisfy some predi

cate. .More powerful editing can also be performed using the program informa

tion maintained by ~1asterscope. For example, it is possible in a single command

to replace all occurrences of the variable named x with the variable y.

The predicates that can be specified to Masterscope are described by a set

of templates that can be extended by the user. The result is an ad hoc language

for a particular set of queries on program information.

The structure and semantics of objects in Interlisp is based on lists, and the

operations provided include creating, extending, and searching these lists. Lists

are a simple data structure that provide a way of grouping objects analogous to

sets, but are inefficient to search. As with text in UNIX, to make any kind of

analysis of the program it is necessary to either scan through all program infor

mation or have the desired subsets of information replicated. lnterlisp also does

not allow constraints on programs (e.g., the number and types of parameters to a

function) to be enforced automatically prior to execution.

One nice feature of the Interlisp environment is that runtime data has the

same representation as program data. This feature, together with the uniform

user interface, makes Interlisp a much better environment for debugging than

tool-based systems such as UNIX. Unfortunately, the price paid by lnterlisp is

that execution is interpretive and therefore an order of magnitude slower than it

be if it were compiled. It is possible to compile Interlisp programs, but doing so

disables the high-level debugging facilities.

OMEGA is designed to be like Interlisp in that it has a single protocol for

manipulating a uniform representation of programs and data. However, the pro

tocol in Interlisp is text-based, which requires parsing commands and resolving

names. Processing text input opens up the possibility for syntactic and semantic

12

errors, something we want to avoid:

The major weakness of Interlisp is its representation of programs as uncon

strained lists of objects. List operations are not powerful enough to provide

efficient access to the wide variety of program views that are useful in manipulat

ing programs. For example, there is no general mechanism for quickly indexing

on an element of a sublist within a larger list; this mechanism would be useful in

processing requests such as "edit all functions that expect more than one argu

ment".

2.3.3 Smalltalk

Smalltalk, like lnterlisp, is an integrated environment. However, it is very

different from both Interlisp and UNIX in its communication medium and proto

col. Programmers communicate with U~lX or lnterlisp through a conventional

keyboard and CRT; with Smalltalk they use a large screen and a pointing device

(e.g., a mouse).

This medium allows a protocol in Smalltalk based on pointing at objects

and displaying output for different activities in separate "windows", independent

rectangular areas on the screen. The use of a large screen in conjunction with

windows and pointing makes attractive the use of menus for selecting commands

and data. Previous menu-based systems such as UCSD Pascal [Softech 79] used

only a small portion of the screen for the menu and allowed access to only one

menu at a time. As a result, using menus was tedious and systems like UNIX

have disdained them.

Pointing is an important mechanism because objects can be denoted

without the user remembering and typing a string of characters, and without the

system having to resolve the name using some form of symbol table. A mouse or

similar pointing device makes pointing feasible since it allows the user to move

the cursor quickly and accurately.

Smalltalk also provides a different structure and semantics for objects than

previous systems. Objects are grouped hierarchically into classes; each class is

itself an object and, except for the root class, belongs to another, higher-level

class. Associated with each class is a set of operations that are defined on objects

in that class.

Binding of operator names to operations is done entirely at runtime, mean

ing constraint checking cannot be done before execution begins. This dynamic

binding also causes a severe execution performance penalty.

Smalltalk is a single-user environment; there are no aids for developing

multi-user projects. There is nothing like Masterscope to help a programmer see

the interconnections between pieces of programs. The intention is to use

Smalltalk for quickly implementing and testing out ideas. Once the ideas work a

complete implementation can be done in a more traditional environment.

13

We do not believe this dicho~omy between a prototyping environment and

a production environment is either necessary or advantageous. The fastest way

to produce any impleiD€ntation of ideas is to use and modify existing implemen

tations. In OMEGA both prototype and production software is evolved froPl

existing software. The difference is that a prototype is built quickly from pieces

that might only approximate a desired function, whereas the production software

has refined the pieces to provide a complete and more precise implementation.

The importance of Smalltalk is in its medium (large screens and mice) and

associated protocols (pointing, windows, and menus). We have tried to use and

improve upon these concepts in designing O:MEGA. Chapter 4 discusses how the

use of pointing is generalized in O:MEGA.

2.3.4 Cornell Program Synthesizer

Interlisp and Smalltalk are both integrated environments for simple, uncon

strained languages. The Cornell Program Synthesizer [Teitelbaum and Reps 82]

was one of the first attempts to build an integrated environment for a language

that has complex syntactic and semantic constructs. It features syntax-directed

editing, incremental semantic analysis, and reversible execution. Like Smalltalk,

the Synthesizer is a single-user environment with no facilities for handling large,

multi-programmer systems.

To provide an integrated environment for the language PL/C [Conway and

Constable 76], a simplified version of PL/1, the Synthesizer provides a uniform

command language in which some of the commands create syntactic constructs.

For example, the command "WH" causes a prototype while loop to be inserted

where the cursor is located in the program.

In the Synthesizer, the visual representation of a syntactic construct is

called a "template", and templates can contain placeholders for other objects.

For example, the while loop template might look as follows:

while condition do
statement

Here both the condition and statement are holes to be filled with a boolean

expression and simple or compound statement respectively.

Unlike other syntactic constructs, expressions are entered as text and

parsed. This distinction was done to avoid requiring a large number of com

mands to produce a comparatively small amount of code. Semantic analysis in

the Synthesizer is done ad hoc.

An important idea behind the Synthesizer is that there is a separation

between the way a program is entered and the way it is displayed. This separa

tion is the key to avoiding the problem of integrating an environment for a

language with a non-trivial syntax. In the Synthesizer this facility is not extensi

ble; in OMEGA we allow the display templates and programming constructs to

14

be defined by the user. This facility allows one, for example, to define a variety

of loop constructs that are useful for solving common problems.

2.3.5 Gandalf / IPE

Although the Synthesizer provides an integrated environment for a more

structured language than Smalltalk or Interlisp, it still interprets execution and

does not support development of large, multi-programmer systems. The Gandalf

project [Habermann, et al. 82] is an attempt to provide an integrated environ

ment that executes compiled code and supports multi-programmer systems.

The part of Gandalf that interfaces directly to the programmer is called the

Incremental Programming Environment [Medina-Mora and Feiler 81]. The IPE

user interface is similar to the Synthesizer, except expressions are built the same

way as other constructs, not as text as in the Synthesizer. This uniformity

makes it easier for IPE to support a number of different languages since there is

no parsing done at all. Semantic analysis, however, is still done ad hoc.

One of the traditional advantages of interpreting over compiling is that exe

cution can begin almost immediately without waiting for code generation and

linking. IPE performs code generation on one function in the background while

the user is editing another. Since editing as an activity is rarely CPU bound, this

technique allows the load of compilation to be distributed more evenly over time

and helps avoid long delays for the user.

Like the Synthesizer, Gandalf is construction-based; it is designed to sup

port the creation of new software. Although there are aids to create large sys

tems, the user interface and data model provide no mechanism for easily querying

or viewing the interconnections within a program.

Both Gandalf and the Synthesizer provide a hierarchical model of programs.

This model is natural for top-down development but unsatisfactory for program

maintenance or improvement. For example, when adding a parameter to a pro

cedure one would like to be able to view and modify each call to the procedure.

This view is not easily attainable with only a hierarchical view of the program.

Gandalf also separates operations on objects within modules from opera

tions on modules and objects that contain modules. For example, the

configuration and version control facilities work with modules as the basic ele

ment whereas IPE can only manipulate the information in an individual module.

The Cedar system [Deutsch and Taft 81] also makes this separation, but we feel

that this is an artificial separation that hinders rather than helps programmers.

Modules are one form of grouping objects in a program. Other forms

include procedures that use a given module, statements that reference a variable,

and variables that may be modified by a particular module. What group of

software objects a programmer wishes to see depends on what the programmer is

doing. The hierarchical structure of modules is useful in top-down development,

but when debugging, modifying, and extending software other kinds of grouping

15

are necessary.

2.3.6 Programmer's Apprentice

The programmer's apprentice (PA) [Waters 82] is aimed at augmenting

rather than replacing existing programming environments. The idea is to use a

software knowledge base to make it easier for programmers to construct, undex:=

stand and modify programs.

The philosophy of the PA is similar to that of OMEGA. Using the PA, a

programmer manipulates plans, common programming constructs with associated

semantics, to construct and modify programs without concern for the details of

the code associated with a plan. The system can automatically generate code

from plans, extract intended plans from existing code, and display plans graphi

cally on a terminal.

Using a library of constructs such as plans during software development

and maintenance is one of the goals of O~fEGA; however, our approach is very

different. Interaction with the PA is through typing pseudo-English commands,

whereas O~IEGA is menu and pointing based. Our approach eliminates the

problem of misinterpreting the structure or semantics of commands and automat

ically presents the possible options to the user.

The library of plans is an ad hoc database that the PA accesses as it inter

prets commands; in O:MEGA we use a general-purpose database system. By

doing so, we do not have to implement efficient access methods or manage secon

dary storage, and the user can express a wide range of queries.

In time it may be possible to combine ideas from both the PA and OMEGA

to provide both flexibility in accessing the database and intelligence in interpret

ing the knowledge that is in the database. However, in this thesis we are focus

ing on the problems that are involved in supporting flexible access to, rather than

human-like interpretation of, programs.

2.4 Conclusions

There are many more systems we could discuss, but they are similar to one

of the systems we have analyzed. Although the details of the systems we have

presented are very different, the systems are actually quite similar in the , ay

that programmers communicate with them. Except for Smalltalk, they all use a

conventional terminal as the medium. Except for UNIX, each system is

integrated, meaning a. single protocol or command interface for the user. The

Smalltalk protocol is also different in its use of pointing, menus, and windows.

The structure of the data that the programmer manipulates is either text

(UNIX), lists (Interlisp), or hierarchical (Smalltalk, Synthesizer, and Gandalf).

Data integrity is either checked periodically by a compiler (UNIX), incrementally

by the system (Synthesizer and Gandalf), or mostly left to the user (Interlisp,

16

Smalltalk). The incremental chec\cing that systems perform 1s implemented ad

hoc and therefore difficult to extend or change.

Smalltalk, the Synthesizer, and the IPE part of Gandalf are all

construction-oriented; the operations they provide on data are aimed at creating

and deleting objects in a small, contiguous piece of a program. They do not pre

vide facilities for maintaining and evolving software that is viewed and modified

by a number of programmers.

UNIX and Interlisp do provide some help, but because of their. representa

tion of programs, the operations they provide are inadequate and low level. In

UNIX, for example, the basic data structure is a file of text. By convention, each

module is stored in a separate file. Programmers must decide on the physical

implementation of sharing part of a module, whether it be to periodically copy

files or to share a single file that contains conditional compilation tags to identify

non-shared portions.

The major problem of all these systems is that their representation of pro

grams is not well-suited to the needs of a programmer working on a large

software system. Text-oriented systems provide a physical rather than logical

view, and tree-oriented systems provide a single logical view that does not match

the view a programmer needs when maintaining and enhancing a software sys

tem.

In the next chapter we describe the representation that OMEGA presents,

and show how this representation provides the functions of the systems presented

here as well as facilities these systems cannot. Recognizing that the manipulation

of program information is an instance of the general problem of data manage

ment, we use a general-purpose database system to provide a powerful set of

operations on ·software and free OMEGA from storage management concerns.

Chapter 3

The Program Database

Prisoner: lVhat do you want?
Number 2: lVe want information.
Prisoner: You won't get it.
Number 2: By hook or by crook, we will.

- from the television show The Prisoner

3.1 Introduction

17

Software constantly changes as new features are added, bugs are fixed, and

new hardware technology is exploited. Programs are not self-contained; they use

and interact with algorithms, data structures and subroutines from existing pro

grams or libraries. Consequently, programmers need to understand existing

software in order to use and modify it to meet new requirements as well as to

create additional, compatible, software.

Most programs are too large to understand in complete detail; hence, pro

grammers select different views to understand different aspects of them. Under

standing the implementation of a procedure may involve looking at its state

ments; understanding how a variable is manipulated may involve looking at the

statements that access the vari-able; understanding how a running program

reaches a certain state may involve looking at statements in the order in which

they are executed.

In the previous chapter we saw that current programming systems do not

support these and other views of large collections of software. To provide the

most powerful mechanism for describing views, OMEGA needs a general solution

to the problem of supporting multiple logical views of a large amount of informa

tion.

General-purpose database systems provide this solution with facilities for

defining views of a database and, through the processing of requests called

queries, for retrieving views from the database. By using a database system to

manage procedures, statements, variables, and the other information that makes

up a program, 011EGA avoids constraining the ways in which a programmer can

view software, and avoids duplicating the function of a database system.

Database systems provide many other useful facilities in addition to the

ability to retrieve and define general views of data. They manage permanent

storage, support efficient data access, provide concurrency control, attempt to

recover from crashes, and try to ensure the integrity of the data. All of these

18

problems arise in software development systems; using the work of database

researchers allows us to address issues specific to programming environments.

In the remainder of this chapter we describe the representation of programs

that O:MEGA presents to the user, and how this representation can be translated

into a schema for a traditional database system. This representation includes the

integration of runtime information into the database, thereby providing support

for debugging activities. We suggest two extensions to database systems to

increase the power and improve the efficiency with which program information

can be accessed. Finally, we show how OMEGA uses the database system to

support traditional programming operations, including editing, symbol table

management, and configuration building.

3.2 Semantic Data Model

Two popular program representations are text and trees. Text is expensive

to extract program semantics from and, therefore, inefficient to use in processing

most queries. Simply distinguishing comments from program statements requires

scanning each character. Non-trivial queries, such as finding all the uses of the

"+" operator in which both operands are integers, requires parsing and semantic

analysis of the entire program.

Update operations on program objects (statements, expressions, and vari

ables) must be translated by the programmer into operations on text objects

(lines, words, and characters). This translation can be complicated; for example,

changing the name of a variable requires string substitution every place the vari

able is used, which is not necessarily the same as every place the string appears.

The hierarchical view provided by tree-oriented systems is better than .: h~

linear view of text-oriented systems, but is still only a single view and therefore

inadequate. Suppose, for example, a programmer wanted to port some software

to a new machine. In doing this, the programmer might wish to look at all the

constants defined throughout the software. However, it is likely that the con

stants would have been defined in the different modules where they logically

belonged. A system that provides programmers only one organization of pro

grams cannot satisfy the variety of activities that make up software development

and maintenance.

The program database is so large that the complete structure of it is not of

interest to programmers. At any given time, depending on the particular task, a

programmer needs to see some cross-section of the database that contains the

relevant objects. \Ve call these cross-sections program threads, as they

correspond to strands of connected objects in a large fabric of software.

19

Text and tree organizations are two kinds of program threads. Other

examples include the following: ·

• statements that reference a variable

• procedures that use a module

• statements executed for certain input

• modules written before a certain date

• constants defined for a particular machine

The concept of a program thread captures many separate facilities from

current programming environments, including structure-oriented editing, module

dependency analysis, cross-reference listings, call graph generation, version his

tory manipulation, and execution trace generation and analysis. In addition,

there are many other possible program threads corresponding to particular infor

mation in which a programmer might be interested. For example, one might

wish to see the uses of an I/0 procedure where the parameter designating a file

has a particular value.

The use of program threads also eliminates redundancies that arise from

having separate facilities. For example, both module dependency analysis and

cross-reference listing generation require preliminary analysis in text or tree sys

tems. Frequently this analysis is replicated for each facility, and therefore is

likely to become inconsistent.

Using OMEGA, programmers define, retrieve, and update objects and

threads of objects. These operations provide a semantic model of software that

supports many different views of programs, and therefore can support the various

activities that are performed during the different stages of software development.

3.3 Picking a General-Purpose Database System

To use a general-purpose database system to implement program threads, it

IS necessary to map the program thread model onto a general-purpose data

model.

The three data models whose implementation has been pursued most exten

sively are referred to as the relational, network, and hierarchical modelst. The

relational model is based on collections of objects, called relations, where each

collection is made up of homogeneous objects, call€'d tuples. A tuple is made up

of fields that contain individual values. One or more of the fields form a logical

key, whose value distinguishes the tuple from other tuples within the relation. A

small number of powerful operators are defined on relations that allow general

queries and views to be specified.

tFor background and a more complete discussion of these data models, see [Ullman 80].

20

In the network model, data is represented by nodes of information and links

between related nodes. The resulting graph has the advantage of more naturally

representing program information; however, network systems do not provide the

quer~ processing and view definition capabilities of relational systems.

The hierarchical model is a special case of the network model; data is

organized as a tree rather than a general graph. This restriction often makes it

possible to access data more rapidly than in other models. Since program threads

include non-hierarchical information, both the network and relational models are

better suited for our needs than the hierarchical model.

Other data models, such as the entity-relationsh£p model [Chen 76], have

been proposed to add semantic extensions to the relational model. The entity

relationship model provides a semantic model that is very close to program

threads, with program objects corresponding to entities and threads correspond

ing to relationships. However, work on this model has, until recently (e.g., [Cat

tell 83]), focused on semantic rather than implementation issues.

Our choice was to have OMEGA use a relational database system rather

than build query and view capabilities on top of a network system, and therefore

offer programmers flexibility in describing views of programs without having to

provide our own query processor. This choice allowed early experimentation with

program queries, while sacrificing performance and elegance. In the next section,

we show how program information can be stored in the traditional relational

model and suggest enhancements to help manage this kind of information.

3.4 Storing Program Information

To process queries on program semantics, it is necessary to have the infor

mation that a compiler builds during its parsing and semantic analysis phases.

This information consists of some form of program graph and symbol table. Fig

ure 3.1 shows part of the program graph for the following program fragment:

prevmax := max;
if a> b then

max:= a;
else

max:= b;
end if;

The tables in Figure 3.2 show how the information in the graph in Figure

3.1 could be stored in a relational database system. For the sake of clarity we

have simplified this description by omitting some relations, such as those associ

ated with type information, and using names rather than numbers for certain

values. A complete schema for program information is described in Chapter 5.

21

prevmax a max

Fig. 3.1: Program graph for fragment.

22

I I d «tml r I -. •I D~Xl I td ~~rr-rtl "'Pr-td "~''
; hY.::.~ I J.!E~tmH 69::!3 69:?~ IHI:.'l< \' 3tl3 bl~~ 6.1:"8 69:.!9

m~~
I 111 hrn~ 69::!5 0 6'.)::!9 '3rt3bl~! 6579 0

m1o I asr!lltmt~ 6931 0

mJ~ I a~l.5tmt!o 6933 0

ld n:1.m~ tv~-r•l tv~td

(i."/;'8 ~8~ tvprn3m•• 6~::!1

! td
I

i lh'-rti lb .. td rh,..rtl rb!!-td fi.)79 ~84 tv~o:~.mr! 6::!::!1

)6\1::!.~ I V:lrt3bJ~~ 6581 vartabl~! 6580
(i.',~O 8311 tv~oam~• 6~:?1

16931 I V3rt3bJ~ 6&80 u.nabl~' 657& li'·81 6.)77 tvp~n:~.m•• 6~:?1

[69321 ,. an:~.bl~~ 6580 vartabl~ 65i9

1fth•n~ rtlatloo ld 1dtnllfi~r

ld condlt~t
f}.~)77 prtv m3'

818 m:n.

:.'~I >
1~:.' 3

4.'\1 b

rondh•t• r~lattoo

nat~m~nt!

lc:~.ll• r•lauon

lunrtton• r~latton

Fig. 3.2: Relations for information m 3.1.

23

Each tuple in the statements relation corresponds to a program statement.

We associate a unique identification (UID) with each tuple, represented by a

number, and use this number to refer to the tuple from other tuples. A UID is a

• logical key for a tuple in a particular relation, since it uniquely identifies the

tuple within the relation and does not depend on the tuple's physical location.

Since some statements can contain an arbitrary number of other state

ments, this key is required to associate all of the contained statements with the

containing statement. Statements may be nested in other statements to arbitrary

depth. UIDs thus also provide a way to represent a hierarchy in a relational

database.

Many program objects are like statements in that they may contain objects

of their own kind. We call data structures to represent such objects recursive

data structures. UIDs represent instances of recursive data structures from

within other structures.

OMEGA allocates UIDs and can request a tuple from the database system

using its relation and UID. Unfortunately, this interface does not allow the data

base system to retrieve the data efficiently nor does it allow OMEGA to perform

the queries it needs.

Consider, for example, the relations introduced in Figure 3.2. If we wanted

to print a tuple from the 1jlhens relation, we might use the following algorithm:

Prin tStrin g("if ");
PrintCondList(if-condition-list);
if if-else-part -=rf 0 then

PrintString(''else' ');
NewLine; Indent(+4);
PrintObject(if-else-rei, if-else-id);
lndent(-4); NewLine;

end if;
PrintString("end if");

A straightforward implementation of this code generates separate queries

for the if-condition-list and if-else-part fields of the ifthens tuple. Performing

several independent queries is more expensive than a single, larger query because

the database system can optimize operations for the larger query. There is also

an inherent overhead for a query that involves reading the schema and maintain

ing information for concurrency and crash recovery. To display a procedure may

involve traversing several hundred objects; trying to process the resulting several

hundred queries quickly enough to avoid making the programmer wait could

require an unnecessarily large amount of processing power.

An alternate approach is to add an attribute to each of the relations to

indicate in which procedure they are located. Before processing any part of a

procedure, one query could be used to retrieve all the tuples associated with the

procedure into memory. The individual queries are then performed on this in

memory data. Although this provides more efficient access, the mechanism is

24

outside the normal database syste~, and thus only a short-term solution.

This approach raises some problems that must be understood before sug

gesting extensions to the database system to· replace it. Retrieving all the infor

mation at once for a large procedure is undesirable because the user must wait

for the entire procedure to be ·retrieved before viewing any part of iL This wait

would be particularly annoying if only a simple query needed to be done. For

example, to display the statements that reference a particular variable, it is not

appropriate to retrieve all the statements in all the procedures containing refer

ences to the variable.

When traversing information in the database, what we would like is for the

database system to prefetch and cache tuples that are about to be referenced.

Since the system is not aware of the semantics of the UIDs, it will be difficult for

it to know which tuples are best cached in memory. The standard cache con

sistency problems must also be addressed.

A second issue is raised by the recursive nature of program structures.

Consider a query that asks for all the statements that reference a particular vari

able. To discover whether or not the variable is in the statement, this query

needs to examine the expressions in a statement and all subexpressions of those

expressions, to whatever depth expressions are nested in the statement. There is

no way in the relational model to express queries that involve a transitive closure.

Therefore, such queries can only be made through separate queries for each stage

of the closure.

3.4.1 Managing Recursive Data Structures

The issues of efficient access to, and transitive closure queries on, recursive

data structures can be solved only by having the database system understand the

recursive nature of the data. \Ve propose to supplement the standard database

value domains of integers, strings, etc., with a domain of tuple references. Values

in this domain would provide information the database system could use to pre

fetch or retain tuples likely to be accessed. In addition, the transitive closure of a

tuple reference can be defined and used in queries.

Tuple references are similar to foreign keys [Codd 70], and unique ids as

proposed in [Codd 79]. \Ve have extended these ideas, allov .. ·ing tuple references

to be manipulated through the query language; such usage may cause implicit

join operations to be processed. The GEM database language [Zaniolo 83] has an

equivalent facility. Unlike this and other work, whose motivation has been to

provide a better semantic data model, our motivation has been to improve the

performance of a series of small queries that are the result of traversing a portion

of a graph. We now examine this proposal in more detail.

25

3.4.2 Tuple References

A tuple reference denotes a logical key for a tuple in some relation in the

database. We use· the notation "A = rer' to define the attribute A as a tuple

reference. The only difference between tuple references and other fields of rela

tions is that their values are generated and interpreted by the database system.

All normal database operations apply to tuple references. Additional operations,

described below, are also valid.

Although there are several possible implementations of tuple references, we

assume that it is always possible to determine in which relation a referenced

tuple is by saying relation(r), where r is the tuple reference. Thus, without loss

of generality, we may think of a tuple reference as a pair (relation, tuple UID),

even if the implementation is otherwise. The value of a tuple reference is gen

erated automatically and is independent of the physical location of the tuple.

One distinguished value that any tuple reference can have is a reference to no

tuple, similar to the value nil in many programming languages.

Often an attribute always refers to a particular relation; in this case we use

the notation "A= ref R", where R is the name of the relation. This notation

implicitly defines an integrity constraint that restricts the attribute to refer to

tuples in one particular relation. It also improves the readability of attribute

definitions and allows the database system to perform optimizations such as

minimizing the space needed to store a tuple reference.

·whereas the tflhens relation in Figure 3.2 would be defined in INGRES as

ifthens (id=integer, condlist=integer, else-rel=integer, else-id=integer),

it can be defined using tuple references as

ifthens (condlist = ref condlists, else = ref).

The value of a range variable in a query is the tuple reference for a tuple in

the associated relation. For instance, the following example creates an iflhens

tuple for an if-then statement (which requires a condition list, and an else state

ment):

range of c is condlists
range of e is statements
append to ifthens (condlist=c, else-rel="statements'', else-id=e)
where {predicates to select the c and e we want}

The language we use for database operations here and in examples throughout

this chapter is QUEL, the query language for INGRES, with extensions for tuple

references.

26

In addition to normal database operations, it is possible to dereference a

tuple reference by qualifying it with an attribute name. For example, the follow

ing query finds the if statements that have a condition that is simply a boolean

variable:

range of i is ifthens
retrieve (i.all) where

i.condlist.cond-rel = "variables"

If the specified attribute of a tuple reference is itself a tuple reference, it too may

be dereferenced. It is therefore possible to qualify "i.condlist" as a normal range

variable (in this case, of the condlists relation), and refer to its cond-rel attribute

as "i.condlist.cond-rel".

A dereference is a simple notation for expressing an eqm-Jom, with the

result known to contain a single tuple. Using normal notation, the query in the

example above is expressed as

range of i is ifthens
range of c is condlists
retrieve (i.all) where

i.condlist = c and c.cond-rel = "variables".

This form is more complicated than the form using a dereference, and therefore

more difficult for the database system to recognize as the retrieval of an indivi

dual tuple.

If the database system retrieves tuples only on demand, then the same per

formance problems arise dereferencing tuples that occur ,...-ith the use of a

sequence of simple queries. However, tuple references provide the information

necessary for the database system to apply optimization and caching techniques

to improve performance.

3.4.3 Multi-relation Tuple References

It is often advantageous to have an attribute that can refer to one of

several relations. For example, a tuple in the statements relation contains a

reference to a tuple in one of the individual statement relations, such as asgstmts

or ifthens. Although storing references to different relations presents no problem

to the database system, it is necessary to provide a means to determine the rela

tion that contains a tuple designated by a tuple reference. This facility is pro

vided by the relation operator. For example, to find all the if statements we

would say

range of s is statements
retrieve (s.all) where

relation(s.value) = "ifthens" .

27

In the case where a tuple reference should refer to a subset of the relations

in the database, an integrity constraint can be used to restrict the possible rela

tions. For the statements example, this constraint could be expressed as

range of s is statements
define integrity on s is

relation(s.value) = "asgstmts" or
relation(s.value) = "ifthens" or
relation(s.value) = "whilestmts" or
relation(s.value) = "forstmts"

3.4.4 Transitive Closure Queries

Some properties of programs are transitive. For example, if a variable is

used in an expression on the right-hand side of an assignment statement, then it

is also used in the assignment statement. \Ve define the relation

uses(user = ref, thing = ref)

and add the tuple (e, v) to it where e refers to an expression that contains a

reference to a variable v. \Vhen an assignment statement is created with e as the

right-hand side, we add the tuple (s, e), where s refers to the statement. In gen

eral, the uses relation contains tuples of the form (a, b) where a refers to an

object that logically contains the object referred to by b.

To determine if the variable xis referenced in some statement y, it is neces

sary to ask if there exist tuples in uses (y, a1), (a1, ae), ... , and (aM x) for some

sequence of at, ... , aN, N > 0. This question is simply a matter of determining if

(y, x) is in the transitive closure of the relation uses.

We define "closure(R)" to be the relation that represents the transitive clo

sure of a binary relation R. Given the uses relation and the closure operator, the

statements that use the variable named "a" can then be found by saying

range of s is statements
range of v is variables
range of u is uses
range of uclosed is closure(uses)
retrieve (s.all) where

u.user = s and u.thing = uclosed.user and

relation(u.thing) ":I "statements" and
uclosed.thing = v and v.name = "a"

The first line of the predicate for this query specifies that a qualifying statement

s must directly contain some object that is not a statement (i.e., an expression or

28

variable), and that this object r~cursive/y contains a reference to a variable
named "a". Requiring the statement to directly contain an expression or variable
is necessary to avoid reporting enclosing statements, something implicitly desired
in this kind of request.

3.5 Execution Information

Tuple references and a transitive closure operator offer substantial assis
tance in managing static program data. We now turn to the problem of manag
ing the data that results from the execution of a program. Our semantic model,
program threads, includes runtime objects such as the values of variables, activa
tion of procedures, and the rest of the state of the executing program. This
approach integrates debugging facilities naturally into the programming environ
ment, since the same user and database interfaces used for program construction
can be used during debugging.

Although we want to provide the appearance of uniformity between the
source program and runtime data, we also wish to execute compiled code. We
therefore use an interface between the database system and the executing pro
gram, called the program monitor, to provide the illusion that runtime data and
program state are in the database. Figure 3.3 shows how the program monitor
fits into the system.

The program monitor in effect provides relations such as

valueof(variableid, value),

that the user can access in the same way as relations for static program informa
tion. To the database system, the program monitor appears as a collection of
relations that are physically separate from the rest of the database. In a distri
buted database system it is possible to perform a join operation across relations
on different machines. Similarly, the value of a variable can be obtained by
retrieving the value attribute from the tuple in the valueof relation with the
desired variable's id.

Runtime data structures that are more complex than single-valued variables
(e.g., tables, linked-lists, trees) may have more complex operations defined on
them. For example, there might be an operation on a tree to find the node that
has the maximum value for some field. One way to perform such an operation is
to define a relation for the nodes of the tree, put a tuple in the relation for each
node, and perform the corresponding query. In addition, if some update is made
to this relation, it could be possible to reconstruct the runtime data structure
from the relation. These kinds of manipulations require the use of program
dependent data formatting routines. It is natural for OMEGA to support such
routines, since the database can store the formatting routines with the definition
and implementation of the data structure.

code
generator

"compile"

access
1tatic
data

user

editor I
query

processor

:Program
Database

.,
' ' ' ' '

access
runtime
information

\
\
\

\
\

\

\
\

Fig. 3.3: Role of pri)6T<~~H monitor in 0\tEGA.

\ program
\ input/output

\

\
'.

\

' ' \
\

\
\

" \
\
\
\
\
\
\

~
I
i

' \
I

' i
"wf

executing
program

29

30

3.6 Monitoring Execution

When debugging a program, a user often wishes to monitor execution by

having actions performed when specified conditions are satisfied. The most com

mon actions are either to suspend execution or to print out the program location

and values of certain variables. The concept of a breakpoint, as provided in most

systems, is a condition that is satisfied when a particular instruction is reached

and can be implemented directly on most machines.

We call a condition that interests the user an event, and allow the user to

specify a set of actions that are to be performed whenever the event occurs.

Unlike most debugging systems (e.g., [Johnson 77], [Katseff 79]), in which events

are specified in a special debugging language, we allow events to be expressed as

arbitrary relational qualifications. This form of expression naturally integrates

debugging requests into the programming environment, while allowing the

specification of a broader range of requests than most systems.

Some database systems provide a form of events and associated actions 7

called triggers [Eswaran 76]. A trigger specifies a set of commands to be per

formed when a particular data-base command is executed, subject to an additional

boolean expression being satisfied. More generally, a trigger can be thought of as

a predicate involving the information in the database and a set of database com

mands to execute when the value of the predicates changes from false to true.

\Ve could specify this construct using the following syntax:

when event
do

actions
end

The event clause has the same form as the where clause of a QtJEL retrieve

statement, the actions are database commands.

Triggers are difficult to implement efficiently for general events. The detec

tion of debugging events can also be complicated; for instance, consider the event

that occurs when tw~ variables defined in different procedures have the same

value. The program monitor can help make detection of events easier.

In many existing debuggers, the only recognized events are the execution of

particular statements. Thus, although one can imagine debugging events that

are expensive to detect, many useful events can be trapped with simple break

points. To allow efficient implementation of more complex events, the database

system must allow the program monitor to translate events into breakpoints and

report when they occur. Depending on the hardware and operating system, the

program monitor may use a variety of techniques for determining when changes

in the program state (e.g., the value of a variable, the activation of a procedure,

etc.) should trigger events.

31

The following examples show the power and generality of the OMEGA

approach of expressing events as n~lational qualifications. First, suppose we wish

to trap a call to procedure "buggy". To express events that refer to locations in

the program, we assume the program monitor implements a relation

callstack(procedure, level)

that at any time contains a tuple for each procedure that is active. The level

attribute is the runtime depth of procedure calls; it is highest for the most

recently called procedure.

To notify the user when the procedure "buggy" is called we might say

range of p is callstack
when p.procedure.name = "buggy" and p.level = max(p.level)

do
print p

end

Printing a tuple of the callstack relation might consist of displaying the name of

the procedure, the values of its parameters, and the place from which it was

called.

Suppose we are interested in seeing this information when "buggy" is called

from "cause". We would place additional qualifications on the query as follows:

range of p is callstack
range of q is callstack
when

do

p.procedure.name = "buggy" and p.level = max(p.level) and

q.procedure.name = "cause" and q.level = p.level- 1

print p
end

The last qualification indicates that "cause" called "buggy" directly. If we

omitted the fourth constraint, the event would be triggered whenever "cause" is

active and "buggy" is called. Other qualifications may test for particular param

eter values, or other aspects of the program state.

Finally, suppose we wish to suspend execution of the program when

"buggy" is called with parameter n equal to 0. To stop execution, we "update"

a relation called program-state, which contains a single tuple of attributes of the

executing program. For the purposes of this example, we are interested in the

status attribute, which may have a value of RUNNING or SUSPENDED.

range of s is program-state
range of p is callstack ·
range of q is parameters
when

32

p.procedure.name = "buggy" and p.level = max(p.level) and

q.procedure.name = "buggy" and q.name = "n" and q.value = 0

do
replaces (status= SUSPENDED)

end

Using triggers in conjunction with access to runtime information provides

an extremely powerful mechanism for viewing the execution of a program. Con

ventional debuggers provide a limited set of events and conditions that may be

brought to the attention of the user. Often this means the programmer has the

poor choice of too little data or too much. Debugging in OMEGA offers a general

way for the user to select those events and that information that is most useful.

Moreover, output provided by the debugger can be immediately entered into the

database. These facilities provide a powerful mechanism for obtaining and exa

mining execution traces.

The program monitor provides access to data not stored directly in the

database. In addition, the database system must allow the program monitor to

indicate that a particular trigger condition is true. This ability is a natural

extension of the definition of triggers to a distributed environment.

3.7 Displaying Information

Displaying program information on a terminal is a matter of translating the

internal program representation into a human-readable, perhaps pictorial, form.

Ideally, we would like to be able to define this pictorial representation as just

another logical view of the database. However, there are problems with both the

semantics and implementation of this approach.

Unlike traditional views, some portion of a pictorial view will be displayed

on a terminal for a period of time during which the programmer wants to be the

only one who can change the underlying information. The particular information

to be displayed is determined by three independent factors:

• the thread of program information that is desired,

• the pictorial description of that information, and

• the amount of screen space available

\Vhat we want is to be able to define the information that is displayed on

the terminal as "under surveillance" and locked. Since the pictorial view may be

larger than the entire screen, we also need to be able to perform browsing opera

tions such as scrolling.

33

The portal mechanism proposed in [Stonebraker and Rowe 82] provides the

semantics we need. A portal defines some portion of a pictorial view that is to be

displayed, and locks the underlying information in the database. Scrolling is pro

vided by built-in operations to move a portal within a pictorial view.

The traditional implementation of views is to compute the tuples in the

view each time the view is accessed. This computation is expensive for pictorial

views of programs since they ·are accessed frequently but changed only occasion

ally. For example, scrolling first forward and then backward returns the display

to its original state.

The caching of views could save substantial computation, particularly if the

information were kept in main memory rather than on disk. This facility should

be provided by the database system. Otherwise each application (in our case,

OMEGA) undoubtedly will have to do its own caching and therefore have to

worry about consistency issues that the database system is better equipped to

handle.

3.8 Name Resolution

\Vhenever a user enters a name the system must try to determine to what

object the user is referring. In a compiler, a symbol table provides the means for

finding an object associated with a particular name in a given context. Context

dependent name resolution is an important aspect of a good program develop

ment system. People tend to build a "mental working set" of objects and make

frequent references to them, using names that would be ambiguous if the context

were ignored.

OMEGA provides the function of a symbol table by using the database sys

tem to manage context information and expressing the resolution of a name in

terms of a single query. Using the approach of [Rowe 82], the relevant informa

tion is kept in three relations defined as follows:

symbols (object= ref, name= string, context= ref contexts)

visible (from= ref contexts, to= ref contexts)

contexts (priority = integer)

The first relation, symbols, associates an object with a particular name in a

given context. The visible relation defines a structure between contexts so that

names in the context referred to by the from attribute can be resolved in the con

text referred to by the to context. Since this property is reflexive, the 11isible rela

tion always contains tuples of the form (context-reference, context-reference).

The contexts relation associates an integer with each context that determines the

precedence of contexts structured by the visible relation.

34

To understand these relations and the way they can be used, we consider

the example of name resolution in a block-structured language. The basic unit of

naming in such languages is called a block, within which names must be unique.

The scope of a block is a collection of blocks that are searched in some order

when resolving a name.

Suppose we have the following declarations in a Pascal program:

procedure A;
var C : integer;
procedure B;

var C: integer;
end;

end·
'

There is a block associated with each of the procedures A and B. The scope of A

consists of only A; the scope of B is the set {B, A}.

For this example, the symbols relation defined above contains four tuples,

one for each of the procedures and variables in the program. The scope rules of

Pascal require the visible relation to contain three tuples: one to indicate that

names in procedure B are visible in procedure B, one to indicate that names in

procedure A are visible in procedure A, and one to indicate that names in pro

cedure A are visible in procedure B.

The contexts relation associates the number 2 for the context associated

with procedure B, and the number 1 for procedure A. This way, names defined

in procedure B take precedence in that context over names defined in procedure

A. In particular, in procedure B the name "C" refers to the C defined in B, not

the C defined in A.

Given this information, we can find the symbol with name x in block y with

a single query. This query is rather complicated to express in QUEL; to simplify

things we separate it into a view definition and subsequent query on the view.

To define a view of all the symbols named x that are visible from y, we say

range of s is symbols
range of v is visible
range of c is contexts
define view x-symbols

(object = s.object, name= s.name, context= s.context)
where

s.name = "x" and s.context = v.to and v.from = y

Now to retrieve the desired symbol, we select the x-symbol associated with the

highest priority context by saying

range of s is x-symbols
retrieve (s.all) where

s.context = c and
c.priority = max(c. priority where s.context = c)

3.9 Version and Configuration Managemen~

35

Although software changes over time, it is not always the most up-to-date

copy that is of interest. Organizations often must support older releases while

developing new ones. A version is a snapshot of a program or part of a program

at a particular moment of' time. Because of, and despite, greater portability of

software, it is often necessary to support different but largely identical pieces of

software for different hardware or application environments.

A configuration is a specialization of a program or part of a program to

meet a particular set of constraints. The difference between versions and

configurations is that versions are ordered in time, with newer ones presumed to

supercede older ones, whereas all configurations are equally important, and may

coexist forever.

At the core of both version and configuration management are two require

ments that differ from traditional database applications. The first is that there

must be several valid and consistent instances of data in the database. The

second is that it must be possible for multiple users to access and update these

instances of data concurrently. This form of access is not necessarily the normal

database sense of concurrent access; it is sometimes convenient to allow new

instances of data to be created that will subsequently be coalesced into a single

instance.

When a new version of a program is created, it would be inefficient to

duplicate the database. Doing so would also make it more difficult to establish

the relationship between the old and new versions. Software version control sys

tems such as SCCS [Rochkind 75] use a differential file to compactly store pro

gram versions. The original version of the file is kept as are all updates necessary

to transform the file to the latest (and all intermediate) versions. Hypothetical

relations [Stonebraker and Keller 80] can be implemented using this technique

and can be used to support multiple versions of information stored in a database.

One of the problems with systems like SCCS is that they require the user to

explicitly state when new versions are created. Hypothetical relations do not

solve this problem since there is no way to have old versions automatically

removed. To save space and speed up queries involving past versions, the user

must explicitly dispose of old versions. Coalescing of versions is also a manual

process; the exact semantics of a change to an old version is a complex issue

currently being studied.

36

Configuration management involves automatically building a program out

of its various pieces according to a· given set of parameters. For example, a com

mon parameter is the target machine or system on which the program is going to

be run. To minimize the time it takes to build an executable program, only the

pieces that have changed or depend on pieces that have changed should be

recompiled. ·

Tools such as make [Feldman 78] provide this service, but require the user

to specify the program interdependencies. Make uses an auxiliary file that con

tains dependency information; this file must be continually updated by the user

as the program changes.

Since make uses a text file as its basic unit of software and files usually con

tain several procedures, it also often recompiles more code than is necessary. By

using a database, dependency information is not duplicated and the OMEGA

build process can be done without any user assistance. Moreover, the informa

tion is directly retrievable at whatever granularity is desired. For example, to

find all the procedures that depend on a procedure named "changed" we could

say

range of p is procedures
range of s is statements
range of uclosed is closure(uses)
retrieve (p.all) where

udosed.user = p and uclosed.thing = s and
relation(s. value) = "callstmt" and
s.value.proc.name = "changed"

Configuration management also requires the ability to determine which pro

gram information belongs to which configurations. A common way to implement

this feature in conventional programming systems is with conditional compilation

facilities. Simple control statements are introduced to indicate which statements

ought to be compiled for different configurations.

The database provides more complete control over which program elements

relate to which configurations, since each object potentially could be associated

with a set of configurations. A relational qualification can then be used to specify

a particular configuration. For example, suppose we have the following relations:

configurations (name= string, created =time)

configof (object =ref, config =ref configurations)

We can then retrieve all the constants associated with the configuration called

"VAX" by saying

range of c is constants
range of cf is configurations
range of cfof is configof
retrieve (c.all) where

cf.name = '.'VAX" and cfof.config = cf and dof.object = c

37

The most important idea that databases bring to version and con_figuration

control is that a version or configuration is a view of the program. To get the

most out of this notion, it is necessary that the difficult problems of view updates

and consistency be solved. View updates are very difficult in general; however,

database researchers are working on determining constraints under which updates

to views can be processed while maintaining the consistency of the database

[Dayal and Bernstein 82].

3.10 Conclusions

Storing program information in a general purpose database system provides

a powerful mechanism for manipulating existing software. In designing o:MEGA,

we have chosen to take advantage of this power by using a relational database

system to manage all program information.

To represent and manipulate program information, we have suggested the

addition of a domain of tuple references and a transitive closure operator to the

relational model. Both these ideas are similar to other proposed extensions, we

have focused on them because they are critical for simple and efficient manipula

tion of programs.

These extensions do not represent a radical change in the relational model

and are sufficiently general to be of use to a wide variety of applications. For

example, computer-aided design (CAD) systems for integrated circuits must

manage both hierarchical and relational data and could use a construct like tuple

references.

Data management is a fundamental problem of computing. For general

purpose database systems to be useful through a wide variety of applications,

they must provide primitives for data modeling and access. In analyzing the

database needs of a software management system, we have tried to identify those

features that will provide the most leverage for manipulating complex data struc

tures.

Database systems also provide user interfaces for defining and accessing

information. As we can see from the examples given in this chapter, database

languages can be as complicated and difficult to understand as programming

languages, if not more so. Although we have shown how to manage program

information, the software beast we described in Chapter 1 will continue to roam

out of control unless this power can be harnessed. In the next chapter we

describe the basic principles of the OMEGA user interface and show how they

allow easy and simple access to the database without sacrificing power.

Chapter 4

The User Interface

I'm looking through you, where did you go?
I thought I knew you, what did I know?
You don't look different but you have changed.

I'm looking through you, you're not the same!

- from the song I'm looking through you by the Beatles

Seeing is Forgetting the Name of the Thing One Sees

- title of a book by Robert Irwin

4.1 Introduction

38

To simplify the construction and manipulation of soft-ware, programmers

abstract recurring concepts into reusable parts. Current programming languages

provide built-in parts, (e.g., statements, variables, data types, modules) and

mechanisms for creating new constructs (e.g., by writing a procedure, declaring a

variable, defining an abstract data type, or instantiating a module). These

mechanisms allow programs to be modified easily, since a change to the definition

of a part affects all its uses.

Due to the independent evolution of program structures and their different

requirements for parsing in conventional programming systems, each has its own

way (syntax and visual representation) for programmers to specify abstractions in

terms of simpler elements. For example, in some languages, a program may

define a new kind of integer that can be used just as easily (with overloaded

operators), efficiently (with inline expansion of procedures), and cleanly (with

implementation details hidden) as the native integer type. However, in most

languages, it is not possible to define a new kind of for loop.

In Chapter 3 we showed how to represent static and dynamic program

information in a relational database, thus providing powerful operations for view

ing and manipulating software. In this chapter we describe the way the user

interacts with Orvt:EGA to create, view, and modify abstractions.

Using the concept of "what you see is what you get" that has been applied

in many applications, we let users define visual representations of their programs'

objects and structure. Thus, they can directly manipulate objects and immedi

~tPlv observe the results of those manipulations.

39

We call this approach visual abstraction, since it provides a uniform

abstraction mechanism based on pictorial and logical views of programs. This

approach is in contrast to conventional software development, where a descrip

tion of the desired computation is written in a language and then subsequently

compiled.

The remainder of this chapter presents the details of the design of the

OMEGA user interface. We first present our goals for the interaction between

programmers and OMEGA, then describe the mechanics of this interaction, and

finally discuss the detection and correction of semantic errors.

4.2 Goals

We want OMEGA to help programmers produce correct software, not just

prevent them from producing incorrect software. Our approach is to have

OMEGA use a visual medium and conversational protocol to provide a user inter

face that has the following characteristics:

• no input syntax

• multiple output formats

• interactive semantic analysis

• multi-threaded program organization

No input syntax means that the user is not required to cast the program in

one particular form, as for a compiler. As in a menu-based system such as

Smalltalk, OMEGA should provide suggestions and ask questions during program

construction rather than forcing the user to remember and type long strings of

symbols that must obey some rigid structure.

Support for multiple output formats means that the user may have pro

gram structures displayed in a variety of ways, depending on the aspect of the

program that is of interest at the moment. Programming systems typically use a

language as both the input specification and the displayed form of the program.

As a result, compromises must be made between what can be parsed and what

information should be displayed. In OMEGA, we want to use graphical output

and icons to convey the most information in an easily assimilated way. At the

minimum, output formats must support the multiple ways of building programs,

so that the user can work without mentally switching between points of view.

Interactive semantic analysis means that a program is examined as it is

being built. Just as oral communication is more effective than written communi

cation because the speaker can adjust to the response of the listener, the system

should provide feedback to the programmer as the program is built. Errors due

to inconsistency or ambiguity should be resolved immediately. In addition, by

displaying the structure of the program as it is being built, it may help the pro

grammer see higher-level problems that the programming system cannot detect.

40

. Multi-threaded program organization means that the programmer can

manipulate the various threads accessible from the database within a single inter

face. Conventional programming systems provide only one view of a program.

The programmer, however, may wish to see the program in differen,t ways when

it is being built, modified, or debugged. For example, a gro~p of statements

might be edited as a unit because they appear in the same procedure, because

they all reference the same variable, or because they will be consecutively exe

cuted.

4.3 Mechanics of Interaction

The key to lifting the burden of syntax from a programming environment is

to stop using text as the medium of program construction. We have already

argued that text is a poor representation of program information for data mani

pulation reasons; we argue here that it is also inadequate as the sole interface

between programmer and system.

Text hampers human understanding because it is not unique visually; "free

format" languages allow tokens to be placed in many different positions. Text is

also not a good representation for editing. Logically one wishes to operate on

program structures (e.g., statements, variables, types, etc.); using a text editor

one must manipulate some combination of lines, words and characters.

OMEGA resolves the different needs for program representation by allm~.:ing

the program to be entered, displayed, edited, and analyzed in different formats.

This flexibility is provided by

• separating the pictorial representation of an object from the object

itself,

• pointing rather than typing to identify objects, and

• using multiple windows to allow pieces of programs to be constructed

and viewed independently.

We now examine each of these ideas individually.

4.3.1 One Picture is Worth a Thousand Keywords

Most programming environments do not distinguish between an object and

the pictorial representation of that object. In OMEGA, program structures are

displayed consistently as pictographs. A pictograph is a view of an object

displayed on the screen. Pictographs may be arbitrarily assigned to objects;

different pictographs for the same object may be selected when different aspects

of the object are to be emphasized.

41

A pictograph consists of letters or graphical images arranged in a two

dimensional area. Ideally, the display device would provide high-resolution and

allow color, intensity, and non-character graphics to be used. The principles of

pictographs also apply to lower resolution, black and white, or character-only

displays, but existing 24 by 80 character CRTs probably hold too little informa

tion for the ideas presented here to be used on any significant scale.

A pictograph is the visual object that a programmer sees and manipulates.

Shapes and spatial relationships help convey structural information. An impor

tant feature of a pictograph is that parts of it can be used to represent slots into

which parameters are placed.

Figure 4.1 shows an example pictograph for a table search. The table

search is a two-exit control structure since the desired element may or may not

be in the table. The slots in the pictograph show places where parameters may

be inserted for the table to be searched (Table), the key for the desired entry

(Key), and the variable to point to the object desired (Element}. Note that Ele

ment has a default value; use of the pictograph defines an object if no other one

is substituted.

Table Search
Table

Key

Found

r·-·-·-·-·-·-·-,
i i
i Element i
i i
L-·-·-·-·-·-·-·~

Fig. ·L 1: Pictograph fM tab!t• searrh aL;-;t raction.

42

Figure 4.2 shows ap.other pi~tograph for the same control structure. This

pictograph shows more details of the implementation and is in the traditional

text form. This lower-level view of the control structure reveals aspects that are

hidden by the higher-level view. In Figure 4.1, the parameters to the pictograph

are represented by boxes; in Figure 4.2, by italicized words.

label NotFound, Found
var element: subscript of Table
if empty(Table) then goto NotFound
element := first(Table) ·

loop
if element.key = Key then goto Found

if element= last(Table) then goto NotFound

element:= next(Table, element)
endloop

Fig. 4.2: Implementation view of a table search.

An important collection of pictographs are those representing objects in the

program. These pictographs may appear in the program structure, but also

appear in a glossary. A glossary is simply a list of pictographs and their mean

ings. Figure 4.3 shows a glossary that might exist in a program using the table

search of Figure 4.2.

Employees array of EmployeeRecord,
table of all employees

InputName EmployeeName, name of
emJ>lovee just read

CurrentEmployee Employeelndex, points to
the record of the current
employee

Figure 4.3. A sample glossary

4.3.2 It Is Polite To Point

Our alternative to entering text is to display relevant pictographs on the

screen and have the user point at, pick up, and put down the corresponding

objects using a pointing device (e.g., a mouse, light pen, finger, etc.). "Picking

up" and "putting down" generally mean pointing at something and pressing a

key or button.

43

The act of picking up an object and putting it down someplace may have a

different effect depending on the objects and the parts of the pictograph selected.

Picking up the EmployeeRecord pictograph in the glossary in Figure 4.3 and

pressing the "what is this?" button would cause a description of the type

EmployeeRecord to be displayed. Picking up the Employees pictograph and put

ting it down in the Table box of Figure 4.1 makes Employees the actual parame

ter of the TableSearch pictograph.

To use the TableSearch control structure in the program, we first pick up a

copy of it by moving the mouse to the pictograph and pressing the pick-up but

ton. We place it at the desired point in the statement list we are working on by

moving the mouse just below the statement we wish it to follow and pressing the

put-down button. This action causes the entry line of the pictograph to be con

nected to the previous statement. Figures 4.4(a) and 4.4(b) show how the list of

statements appears before and after the insertion of the TableSearch.

The parameters of TableSearch are filled in by picking up the objects and

putting them down in the boxes. The two possible exits are now sites for addi

tional statements to be connected. Figure 4.4(c) shows the statements after the

TableSearch has been filled.

4.3.3 What Is In A Name?

Identifiers in programs serve two functions: they provide a visual tag that

the reader uses to associate together different instances of the same object, and

they provide a mnemonic description of some properties of the object. In tradi

tional systems, these two purposes run against each other. Shorter, more distinct

identifiers are easier to resolve visually, yet longer identifiers that often may be

similar are more descriptive. In OMEGA, these two functions are separated.

Pictographs may be assigned to objects arbitrarily to improve the visual represen

tation of the program; properties of the object are instantly accessible (and may

be displayed on part of the screen as the glossary) from the database.

The ability to name by pointing adds significant power to the programming

environment. For instance, it is not necessary for displayed pictographs to be

unique. If it is necessary to disambiguate a name, the user simply points to the

intended pictograph in the glossary (or somewhere else on the screen). Since the

system always references objects and merely displays pictographs for the conveni

ence of the user, the same pictograph may be used in different parts of the pro

gram without causing confusion about what object they refer to.

In conventional programming systems, the case often arises that the best

name for an instance of a data structure is the name of the type of the data

structure. This conflict must usually be resolved by adding a prefix or suffix to

one or the other of the names. A similar problem occurs here; when pointing to a

pictograph, it may be meaningful to pick up either the actual object or a new

instance of the object. Such problems are easily avoided by allowing several

pick-up keys. For example, after pointing to a variable, the user might choose to

pick up the variable itself, the variable's type or v:llllf•_ or even a new variable of

Read idt>n tifier id from input

Fig. -t..t(a): Statements and point device before insertion.

Read identifier id from input

Table Search
Table

Element

Fig. -t.-t(h): .\fter insPrt ion.

44a

Read identifiPr id from invut

Table Search
Table

Employees

Key Element

lnputName CurrenlEmp

if s.class = 1\.EY\VORD then Error("undeclared identifier". id)

Fig. 4.4(c): After filling parameters.

44b

45

the same type as that variable.

The use of multiple pick-up keys does not require a pointing device with

many buttons, in fact the pointing device does not have to have any buttons at

all. As the programmer's right hand controls the pointing device, the left hand

stays on the keyboard and uses keys within reach as buttons. Unlike Smalltalk,

in which menus pop-up in the middle of the active portion of the screen, or

Cedar, in which the pointing device must be moved to a menu elsewhere on the

screen, this approach allows commands that are used frequently (e.g., "zoom in",

"add", "delete") to be entered with a single keystroke without repositioning the

pointing device.

4.3.4 Rome Was Not Built In A Day

One of the advantages text-oriented interfaces have had in the past is the

support of partially-formed programs. Since no examination of the program

occurs until the user requests it, it is easy to leave loose ends to be fixed up later.

Tree-oriented systems often have restrictions, for example, that nodes must be

added top-down. Moreover, the transformations possible on text are limited only

by the power of the text editor and the imagination of the user. Structure

oriented editors often make some transformations difficult; for example, it may

not be possible to change one kind of a node to another without first deleting and

then recreating the node's children.

There are some transformations that can be accomplished only with text

oriented systems. For example, moving delimiters to make what used to be a

string or comment into program statements requires parsing. "Commenting out"

code is a meaningful and straightforward transformation in OMEGA, however,

and it is not necessary to resort to text tricks to accomplish it.

Programs are not represented linearly on the screen in OMEGA. It is possi

ble to build several program fragments independently in different windows and

connect them together by picking up and moving around pictographs. For

instance, in the previous section, it would have been equally possible to assign the

parameters to the TableSearch construct before inserting it into the program as a

statement.

One freedom a pointing interface does not allow is that of referring to an

object that is not yet defined. This restriction is not so bad since the parameters

of an operation can be defined without defining its implementation. For example,

one cannot create a call to procedure I before creating the procedure, but one can

create I and refer to it before specifying its body. Eventually, the program will

reach a state in which all necessary objects and attributes have been specified,

and then be ready to run.

46

4.3.5 Screen Management

During an OMEGA session the screen is composed of a collection of win

dows that belong to one of the following classes:

• catalog

• glossary

• program

• response

A catalog window displays a subset of the available operations that are

defined, including objects, control structures, operations, etc. A program window

displays program fragments. These fragments can be either c~mplete or partially

assembled programs. A glossary window displays information about pictographs

displayed in other windows on the screen. A response window displays output

from some command or program, such as an error message. Figure ·1.5 shows a

sample screen.

Catalog windows are the primary means of searching for information in the

database. Standard queries allow users to locate previously defined operations,

objects, and program fragments that they can use. Things in the catalog may be

displayed in different ways. For example, the lower right window shows opera

tions on booleans; the middle right window shows operations used to read from a

file.

Glossary windows are created in conjunction with program windows. The

glossary is the place where the two functions of traditional identifiers, tags and

descriptions, are brought together. It displays the pictograph for objects and

descriptions of what the objects are. Normally, the glossary associated with a

program window contains entries for each object displayed in the program win

dow. Of course, it is possible to have some of the well-known entries omitted.

The window in the upper left portion of the screen shows a program frag

ment under construction. As the programmer creates, fills, and moves around

objects a number of windows need to be created, enlarged, and perhaps dis

carded. ·with this kind of interaction we cannot expect to use either the user

controlled window allocation style of Smalltalk or the traditional "virtual termi

nal" approach.

Both these strategies rely on a more static kind of window, one that is used

at a particular size for a relatively large amount of time before being enlarged or

discarded. For OMEGA, we prefer to have the size, placement, growth, and

shrinkage of windows determined automatically. An implementation of this facil

ity must take into account

• the importance of a window (a window may be important because it was

recently touched or because it contains the time of day),

procedure readdata

initialize D
while not fulL D do

D tmp := new

! set contents of tmp here l

end while

glossary

D aggregate

D file of text

tmp element of D
E boolean

catalog

read from file

sort I I I I I I I I

sort ~

write to file

fill data. structure

read from file

eof D boolean

eoln D boolean

read Orrom D
readln D
reset D

boolean operations

B and E E

E or E E

not E : E

Fig. 4.5: A sample OMEGA screen.

47

48

• the mm1mum size of a window (it is better to not display something

than to display it too small to recognize), and

• the relationships between windows, so that related windows are placed

together.

The last factor in the list above, inter-window relationships, is partially

handled in Smalltalk through the window pane mechanism. This mechanism pro

vides small windows that display different menus depending on the information

displayed in a larger, primary window. This use of menus is particularly useful

when traversing a hierarchy, since the menus show each level of objects. How

ever, this facility cannot be applied in general in Small talk (one cannot define

dependencies between windows), and the placement of related windows is done ad

hoc.

4.4 Abstractions

Thus far we have relied on the reader's intuition for an understanding of

what will happen when pictographs are put together. In this section, we describe

more details of the abstractions that pictographs represent.

\Ve use the term abstraction to refer to the general class of things that pic

tographs represent. An abstraction may be a program object such as a variable,

type, control structure, or operation; it may be a program constructor such as a

variable declarator, procedure template, or type former; or it may be a program

manipulation command such as a query, configuration definition, or directive.

Abstractions are defined using other abstractions. OMEGA provides

abstractions that are used to create program objects; which particular abstrac

tions are available depends on the underlying programming semantics to be sup

ported. An operation that places or instantiates an abstraction causes some

semantic changes to the program database. For example, instantiating a variable

abstraction causes entries to be made in the database to indicate that a new vari

able of the specified type has been created.

An abstraction has three parts: the pictograph that represents it, the

parameters (and how they appear in the pictograph), and its semantics in terms

of operations on the database. The pictograph determines what the user will see,

and what the visual interaction is. The parameters specify what kinds of objects

can be connected to the abstraction and how that is done using the pictograph.

Creating a new object that is an instance of an abstraction causes informa

tion to be added to the database. The operations performed are similar to those

done during syntactic and semantic analysis of conventional programming

languages.

4.4.1 Defining and Using Abst_ractions

Consider the following simple abstraction for creating variables.

Abstraction:
Pictograph:
Parameters:

Actions:

declare a variable
var name : type
name is a pictograph
type is a type object

Create a new variable object
Set the variable's pictograph to name

Set the variable's type to type

49

The pictograph in the example is similar to declarations in conventional

languages. Note that simply by changing the pictograph in t4e declare a variable

abstraction to be "type name;", declarations could be displayed in a C-like for

mat instead of a Pascal-like one.

Suppose we wish to define the exponentiation operator. The following

abstraction would be used:

Abstraction:
Pictograph:

Parameters:

Database:

declare a function
function name (parameters) : type

body

name is a pictograph
parameters is a parameter list object

type is a type object
body is a statement list object

Create a function object
Set its parameter list to parameters

Set its return type to type
Set its body to body
Define its database semantics to insert a

call to the function body

As one might expect, there are also abstractions for statements, parameter

lists, and other program structures. If we wish to define the exponentiation

abstraction, we would perform the following steps:

• Create a new function by pointing at the "declare a function" picto

graph and pushing the "new" button. The pictograph for the definition

of the new function will be displayed in a newly allocated window.

• Construct its parameter specifications using the "build a parameter list"

abstraction. It would presumably contain a real parameter called base

and an integer parameter called exponent.

50

• Connect the parameter list to the parameters part of the function

definition.

• Pick up a reference to the data type "real" pictograph and place it on

type.

• Construct the function body in the body slot by creating and connecting

the necessary declarations and statements.

• Build a pictograph for exponentiation referencing the base and exponent

pictographs and place it in the name slot.

Once the exponentiation function has been defined, we may install it in the

catalog. This operation would be done using the "create catalog entry" abstrac

tion, which might have parameters such as the pictograph for the function and a

list of attributes on which to index the function. A subsequent reference to the

function creates an instance of the function abstraction, which will cause the

specified database operations to be performed when all of the parameters have

been bound.

4.5 Seman tic Error Detection

As the user manipulates abstractions, updates are made to the database.

These updates do not necessarily change the resulting program immediately.

· Any change, such as defining a variable or creating a new statement, modifies the

database. The program is altered only when the statement or variable is con

nected to the program. Moreover, the program will be changed only when a com

plete and consistent modification has been made.

Once the abstraction has been completed (i.e., all parameters are specified),

the updates specified by the abstraction are attempted. This updating takes

place as a transaction on the database system. Erroneous transactions do not

complete and improper objects do not appear as part of the program. For exam

ple, a statement may refer to variable objects whose type has not yet been

specified. The insertion of such a statement would not take effect until the type

is defined. \Vhen the type gets defined, all references to the variable are checked

to be sure they are consistent with the type. If they are, the statements are

added to the program; otherwise, the statements, though in the database, do not

yet affect the program.

Each time an object is connected to a parameter, a check is made to see if

the object meets the parameter's specifications. If it does not, the object is not

connected and an error message is generated. For example, connecting a variable

object to the type parameter in "define a function" would result in an error.

This approach is sort of a "square peg into a round hole" approach: the user can

not bind an object to a parameter if doing so would result in a type violation.

51

An application-level databas.e transaction mechanism is used to manage

partial updates to the program. Since the completion of one update may trigger

the initiation of others, it is essential that multiple transactions be allowed at

once. These transactions are built on top of the standard lower-level transaction

mechanism provided by the database system, ensuring the reliable and consistent

storage of the state of the programming environment even if that state describes

a partial or incorrect program.

The semantic analysis necessary to determine if a parameter "fits" is

equivalent to that done in a compiler after names have been resolved to objects.

Although the user may give an object a name by putting an identifier in its pic

tograph, references to a pictograph lead directly to the associated abstraction.

This interface eliminates the problem of resolving overloading for procedures

since the user points at the actual procedure, not the name of a procedure.

Because semantic error detection is done as the program. is constructed, vio

lations of constraints such as type incompatibilities are reported immediately, not

after some period of time during which the user has forgotten the context in

which the error occurred. Many sorts of errors (missing parameters, undefined

variables) simply cannot occur due to the sequence of operations necessary to

create the program.

Global changes that affect many parts of the program can be performed

reliably because OMEGA can detect incomplete changes. If it is necessary to add

a parameter to an operation, the system can find and request modification of

each instance. Of course, it is not required that all instances be fixed immedi

ately. Such temporary inconsistencies or incomplete objects form a task list of

work to be performed by the user.

4.6 A Bigger Example

\Ve have used isolated examples to illustrate the individual features of the

OMEGA user interface. Now we show how OMEGA could be used in a longer,

practical context. 'Vv' e consider the problem of constructing a module for manag

ing a queue of processes waiting to run on a processor.

Figure 4.6(a) shows the screen upon entering OMEGA. The only informa

tion that is present is the catalog of the relations in the database. The first thing

to do is to find existing modules that manage queues. To do this, we enter and

execute a query to find all modules whose associated glossary information contain

the string "queue". To enter this query, we first create a new query by moving

the cursor to the "queries" entry in the catalog and pressing the "create a new

one of these" key.

52

catalog_
programs
modules
quenes
updates
templates

Fig. 4.6(a): Initial screen.

The resulting screen is shown in Figure 4.6(b). A prototype query is

displayed in a new window; it looks much like a query expressed in QL"'EL. The

glossary window gives a short definition of each of the pieces of a query .

querv . catalog

range variable list programs

retrieve relation modules

where predicate quenes
updates

glossarv templates

range variable list - bindings for predicate variables
relation- where objects retrieved from
predicate- which objects to retrieve

Fig. 4.6{b): After creating a new query.

To build the query we desire, we pick up the "modules" relation from the

catalog window and place it on the "relation" slot in the window for the query,

which specifies that we want to see qualifying tuples that are in the "modules"

relation. To create the range variable list, we move to the slot and press the

"create a new one of these" key. This action expands the slot in to a prototype

range variable list, which is a range statement followed by a range variable list.

The range statement prototype has slots for the name of the range variable

and for the associated relation. To fill in the name slot, we press the "here comes

a string" key and type the string "m". The relation slot is filled in by picking up

the "modules" relation from the catalog window, moving to the slot, and pressing

the "put down" key.

The predicate is filled in the same manner. The only difference is that

when the "create a new one of these" key is pressed with the cursor on the

"predicate" slot, a window is created that shows the different possibilities from

which to chose from in constructing a predicate. The state of the screen after

constructing the query in shown in Figure 4.6{ c).

53

query catalog

range of m is modules programs

retrieve modules modules

where m.giossarylnfo = "*queue*" quenes
updates

glossary templates

m - range variable
modules - relation
ulossarvlnfo- field of modules relation

Fig. 4.6(c): After constructing query.

With the cursor on the query, we press the "execute'' key and the results of

the query are shown in a new window. The state of the screen after executing

the query is shown in Figure 4.6(d). Two modules for managing queues already

exist, one a queue of processes waiting for disk 1/0 and one a queue of jobs

spooled to a printer. In addition to the type of queue they manage, these

modules also differ in the semantics of their operations. For example, the printer

queue manager may process jobs in the order they are added to the queue

whereas the disk queue manager may take into account the current position of

the disk head in choosing the next request to process.

querv catalog

range of m is modules programs

retrieve modules modules

where m.glossarylnfo = "*queue*" quenes
updates

result of query templates

module DiskQueue;
module PrinterQueue·

glossary

DiskQueue- manager of queue of processes waiting for I/0

PrinterQueue- print queue manager
m - range variable
modules - relation
glossarvlnfo- field of modules relation

Fig. 4.6(d): After query is executed.

Suppose we believe that the printer queue manager would be more

appropriate as a starting point for the new queue manager we are constructing.

We therefore move the cursor to "PrinterQueue" and press the "zoom in" key.

The resulting screen is shown in Figure 4.6(e).

54

module PrinterOueue catalo~

procedure add(Process, PrinterQueue); programs

procedure remove(Process, PrinterQueue); modules
quenes
updates

glossary templates

PrinterQueue - pointer to record ...
Process - record ...

Fig. 4.6(e): After zooming in on "PrinterQueue".

To use the "PrinterQueue" module as the basis for the new module, we

create a new configuration of the module called "RunQueue". Creating a

configuration allows common portions of the module to be shared with the "Prin

terQueue" module, meaning that improvements to one module, such as a bug fix

or enhancement, can be easily passed on to the other module. Most systems do

not provide this capability, but instead force the user to either copy the existing

module or add code to the existing source that conditionally performs either the

new or old functions.

Since no reference to configurations is currently on the screen, we must

zoom in on the "templates" entry in the catalog. This operation will create a

new window listing all the relations in the database, one of which is

configurations. •

After creating a new configuration, we must define the type "RunQueue",

change occurrences of the type "PrinterQueue" to the type "Run Queue", and

add any other features not in the printer queue manager. To change type

occurrences, we construct a global update in a similar manner to the way we first

constructed a query. Figure 4.6(f) shows the screen after the update has been

constructed.

update catalog:

range of v is variables programs
replace v (type= RunQueue) modules
where v .type = PrinterQueue quenes

updates
dossarv templates

v - range variable
variables - relation
type - field of variables relation
RunQueue- pointer to record ...
PrinterOueue - pointer to record ...

Fig. 4.6(f): After constructing update.

55

In addition to this update fo:r: the types of variables, it would also be neces

sary to perform similar updates for functions, parameters, and record fields. All

of these updates could also have been defined as a single, higher-level operation

that changes all references to a type to refer to a second type. In this case, the

change would require simply selecting and executing this operation.

Figure 4.6(g) shows the "RunQueue" module after the updates have been

performed.

module RunOueue catalol!:

procedure add(Process, RunQueue); programs

procedure remove(Process, RunQueue); modules
quencs
updates

!!:lossarv templates

RunQueue- pointer to record ...
Process - record ...

Fig. 4.6(g): Newly constructed "RunQueue" module.

This construction shows an example of how the use of pointing, templates

for abstractions, and interactions with database fit together. Since it is not taken

from usage o(a real interface, it is unnecessarily verbose. In practice, popular

"short cuts" are likely to be used to specify frequently occurring combinations of

commands. Nonetheless, this example shows the style of interaction that the

OMEGA user interface provides.

4.7 Conclusions

Graphical input and output provide efficient and effective ways of express

ing and representing the relationships between different program elements.

Rather than expressing a program in terms of a language, programmers using

OMEGA define and manipulate abstractions visually. Consequently, instead of

having to parse lines of text and resolve identifiers to objects, causing conflicts

that leads to multiple languages, O:MEGA can provide a uniform model of

abstraction and a simple structural interface.

Using a database, the same program may be manipulated according to

several different viewpoints, including a traditional hierarchy. Recent deyelop

ments in programming languages have favored modular structures, with restric

tions on which objects and operations are available to which moduies. O~GA

not only makes such constraints easy to describe and check, but allows auditing

of usage in a natural way.

56

Languages such as Ada requi~e the programmer to describe modules twice -

once from the perspective of the implementor, and once from the perspective of a

user. OMEGA allows these two perspectives to be defined as views on a single

description, along with indications of what parts of the implementation should be

visible to users. This facility can be generalized to allow different classes of users

to have different levels of access to the implementation of a module.

Because the partially constructed program is stored in the program data

base, it is possible to immediately check for compile-time errors. Moreover,

because the program is built rather than typed, a variety of common errors can

not be made.

The user interface described in this chapter together with the database

organization described in chapter 3 forms the design of OMEGA. Although we

have tried to fit the user interface and database together, we also have strived to

focus each on its respective task so that implement~tion issu~s can be isolated to

a particular area and solved using the general principles of the individual fields.

In the next chapter, we discuss what we have done in the way of implementation

to experiment with these ideas.

Chapter 5

Experimental Implementation

Dorothy: Gee Toto, I don't think we're in Kansas anymore.

\Vizard: Ignore that man behind the curtain!

-from the movie The ~Vizard of Oz

5.1 Introduction

57

Often an implementation is more interesting than a design because it is a

concrete representation of some ideas. People frequently confuse the two, not

distinguishing between solutions to problems and the realization of these solu

tions. The best example of this kind of confusion is in programming languages,

,.,.·here a compiler is often used as an operational definition of the language.

It is important not to confuse the ideas presented in previous chapters with

the implementation that we describe in this chapter. The number of ideas in the

design of OMEGA make a complete implementation too much effort for this

dissertation, not to mention the effort involved in preparing and polishing a sys

tem for use in a production environment.

Since we cannot build a production system, we certainly cannot evaluate

the effect of OMEGA on programmer productivity. As we mentioned in

Chapter 2, this would be a difficult task even with a working version of OMEGA,

since just measuring programmer productivity is a hard problem.

The purpose of doing some of the implementation, then, was to learn more

about our ideas. \Ve particularly wanted to see if using a relational database sys

tem was feasible since the use of such a system is one of the more unusual ideas

in the design. Some of the specific problems that had to be solved to do this

include specifying a relational schema for a particular set of programming

language constructs and interfacing to the database in terms of this schema.

We also wanted to experiment with our pointing-driven user interface and

the window allocation ideas that are needed to support it. Problems in this part

of the implementation include representing and displaying pictographs, allocating

windows, and interfacing to the database system through the display so the user

can ask queries on the program information.

58

In the remainder of this chapter we present an overview of the approach to

implementing som·e of these ideas· and then discuss the individual implementa

tions in detail. We also briefly discuss the performance of our implementations

and what it means about the design.

5.2 Approach

To experiment with our ideas, we needed an apparatus with which we could

quickly build parts of OMEGA. Since our design is targeted for future hardware

and database technologies, it was necessary to use components that do not pro

vide the full power and speed we eventually expect to have available. In particu

lar, we did not have access to a commercial database system or a bit-mapped

graphics workstation.

The underlying environment that we could use to develop OMEGA was

UNIX running on a VAX-11/780t. One of the main points of'Chapter 3 was that

OMEGA should use a general-purpose database system; we therefore chose the

relational system INGRES because it was convenient (it runs on UNIX), familiar

(we had used it before), and "supported" in the sense that the database research

group at Berkeley was (and still is) using and doing research on INGRES. Talk

ing to members of this group helped us both to understand how INGRES has

evolved and what problems in database systems are currently being solved.

Once we had decided on the database system, we had to decide what to put

in the database. The intent of OMEGA is to manage large software systems, we ~

therefore wanted to be able to use OMEGA on a relatively large system. This

desire meant we needed a way to quickly enter some existing software into the

database, whirh in turn implied that we had to support the structure and seman

tics of some existing programming language even though we eventually wanted to

provide the general form of abstraction discussed in Chapter 4.

The requirement of an existing body of software eliminated our first choice

for a language to support, namely Ada. We also decided against the popular

languages C and Pascal. The textual macro facilities available in C make it

difficult to store the program in the database as the programmer really thinks of

it.

We chose the programming language Model [lVIorris 80] over Pascal because

it supports more recent programming concepts surh as abstract data types and

generic modules. We felt it was important to understand how to handle these

facilities since they are present in Ada and other, newer languages. Also, the

DEMOS operating system [Baskett, Howard, and Montague 7i], which is being

used as the basis for some operating systems research at Berkeley, is written in

Model and provides an interesting testbed of evolving software.

tV AX is a trademark of Digital Equipment Corporation.

59

Given these tools, our implementation consists of parse, a program that

takes Model text and enters it into. the INGRES database, and peruse, a program

that lets the user view, query, and modify the software that is stored in the data

base. Figure 5.1 shows how the various pieces of our implementation fit together.

5.3 Storing Program Information in an INGRES Database

The first thing we had to do was decide how to store the program informa

tion in the database. This decision involved designing the schema by defining the

initial set of relations and views. Although we eventually wanted to be able to

extend the kind of information we store in the database, for simplicity we

assumed a static schema.

The schema has undergone several iterations, and is certainly not yet ideal.

We used the following ideas to guide our design:

• Represent classes of objects by relations, individual objects by tuples.

• Use traditional programming language structures (variables, if

statements, etc.) as the object classes.

• Store a unique identification (lJ1D), represented as a.n integer, in the first

field of each tuple and use this number to refer to the tuple from other

tuples. Use the number 0 to indicate a nil, or unassigned, reference.

• Use a (relation UID, tuple UID) pair to refer t{) an object whose

representation can vary, e.g., an expression can be a function call, sub

script operator, constant, etc.

• Represent information once; use views to represent different kinds of

references to objects, e.g., variable usage is a view of the variables rela

tion.

The resulting schema consists of 58 relations and 15 views for storing pro

gram information. A little less than half of the relations (26) are for traditional

symbol table information, almost a third (19) for representing expressions, and

the remainder split between representing statements (10), the string table (2), and

a relation associating objects with the objects they contain (referred to as the

uses relation in Chapter 3). The tables in Figures 5.2(a) and 5.2(b) list all the

relations and their fields.

In addition to these relations, there are four auxiliary relations: uniqueid,

abstraction, bodyof, and viewof. The uniqueid relation contains a single tuple

with a single integer field that is the last UID to be assigned to some tuple. To

allocate a lJlD this field is conceptually retrieved, incremented, and stored back

in the database. In practice, it is too expensive to allocate UIDs one at a time

like this, so a group of n UIDs are allocated at once by adding n to the field of

the uniqueid tuple.

Model
text

parse

user

Program

Database

Fig. -5.1: Oveni('w of implrmentation.

60

n·ht ion
program"
p ror I'd 11 rP-.
fuuctic:n"

proc_cla"·"
paratnli"t"
para rn<'l ers
pararn_rlass
variablt·s
constants
dl'rb
typl'rcfs
f ,\P<'Ilal!lt'S
spaces
spar <'_para m
t y pc(i ... ~-.;
ra II:!<'"

array"
dy n arrays
r<'cords
r<'r u rr<'rs
11 !II<> ns
lil'ldli-.;t"
field"

fit·l<l" (intt·~t·rs urdc..;s otl.<'rwi"<' indiral5<'1

id. prorcd 11 rt'"
id. pirto~rapl.-.. pror-rlass, paramlist..;, <i<'rls. stmtlists

id. pirtog;rapb. proc-dass. paramlist!",
typl'_rl'l. typc_id. df'rls. st mt list'>,
C'X pr- rei. <'X pr-id
icl. string= (publir, inlirw. <'Xt<'rnal. or builtin)

id. paramt'lers, p:tramlist s

id. pirt o~rap hs. param-c lass, type-r<'l. typ<""id
id, string = (n•adon ly, vari<'s. copi<'d)

id. picto~raph-.. typ<'-r<'l. t)·p<'-id
id. valu<'-rl'i. ••ahH'-id
id. sym bol-r<'l. s,v m bol-id. drcls
icl. pictograph". typ<'lists
id. pictograph". typ<'-r<'l, typ<'-icl
id. pictograpl1s. typelists, reptyp<'-rPI. r<'ptype-id. decls

id. pic t ogr:q> !J.,.
id. type-rf'l. typc-id. typ<'lists
id. typ<'-rcl. tn><'-id. lower-r<'l. low<'r-id. upp<'r-r<'l, upper-id

id. C'ltype-rel. C'ltype-id, typrlisb
id. cltyp<'-r<'l. eltype-id
id. fi<'lcllist s

id. fi<'ldlist s
id. field lists
id. liPids. fil'ldli"t s
id. pictograph type-rrl. type-id

<'!111111" id. C"Oil'>l lish
con-. f I i ... t-. id. ron-.t -u-.P. cons t (i ... ts

pr·oct ·' P''" id. pror- ... JH'<'

pirlo~r:tph" id. format = array[l .. ~O] of char

L-..L J>:..:.i.:...c.:...:l t:.:..>.:...f ____L..........:<.:.:>I~>Jc.'...:.''...:.l_-.:...n:...c'l:.:.:<.>:..:l'j~'rt-id. pirt o:;raph ...

Figure' :-1.:!(a): I~ clarion.., for ".'mbol table iuformation.

61

____!t'Llt ion
~~ I !II listS

a~~'' 111 t s
rall~1111h

il"t Ill' II'
rond li-.r...
ra~<·,tmts

ca-.Piists
valueli"'""
loop't ml"
forst 111 Is

frail"
c·x prlist s
field n·f s
'-'llh ... rript
ahst ract
ronr ret<'
I ~·JH'rt'll:t Ill\'

ncw<·xpr
lbnd
uhnd
width
st rill~"
introns
oct ro II"
charron-.
re:drnn..,
nn<kfinl'd
nih-\ pr
ront ain-.

fi<·Jd, (valw·-. an· int<'~<'rs unf<-..,s otherwise indicat <'d l

id. st mt -rei. sl mt -id, stmt lists

id. var-n•l, var-id, <'X pr-rel, c•x pr-id

id. pror-use. <'X prlisl s

id. roudfi.,.ts. dst•-r<'l, ebe-id

id. roncl- rei. rond-id, then-r<'l. I hen-id. rond lists

icl. <·.xpr-rel. <'Xpr-id. pirtographs, rasc·lists. slmtlists

id. valuelisb, slmtlists, raselists

id. lower-rc•l, lower-id. upp<'r-r<'l. upper-id. valuPiists

id. bcforP-rel. hc·for<'-id, rond-r<'l. rorHI-id. stmtlists

id. var-u"e, rang<'-r<'l, rang<'-id. inrr-r<'l. ina-id,

roncl-r<'l roud-id, st m tli"t s

id. funr-us<', <'Xprlists

id. <'X pr-rd. <'X pr-id, ex prlist s

id. r<'cord-rc>l, rc>rord-id. fi<'ld-use

id. <'Xpr-r<'l. cxpr-id. <'Xprlists

id. <'X pr-r<'l. rx pr-id

id. <'X pr-rel. <'X pr-id

id. c•x pr-rcl. <'X pr-id, typr-rd. t yp<'-id

id. typ<'- r<'l. t.ypr-id. <'X pr-r<'l, ex pr-id

id. typ<'-rPI, typP-id

id. ly pe- rd. I y pe- id

id. typ<'-rel. lypP-id

id, pirtographs
icl. valu<' = int<'g<'r

id. valu<' = int<'ger

icl. valu<· = int<'g<'r

id. vain<' = r<'al
id
id
Olll<'r-r<·l. out<'r-id. inner-r<'l. innr-r-id

Figure :i.:?(b): Helations forstatPments and expr<'""lons.

62

63

The abstraction relation associates each relation name with a UID to allow

references to relations to be stored ·as integers rather than character strings. The

bodyof relation associates implementation views with definition views, and is used

by peruse to implement the "zoom in" command. The riewof relation associates

the predefined views with their underlying relations, and is used when directly

accessing information from the database.

6.3.1 Predefined Views

The predefined views of the database represent definitions or uses of pro

gram objects. The use of views allows objects to be displayed differently depend

ing on their context. For example, when displaying a variable as part of an

expression, only the variable's pictograph is printed, but when displaying a

declaration of a variable, its type is printed as well. Of course, it is possible in

OMEGA to have the type displayed in expressions as well, but this is not the

normal way people wish to see expressions displayed. Therefore, there is a view,

called var-use, that is referred to by expression tuples. This view is defined by

the following QUEL statements:

range of v is variables
define view var-use (id = v.id, pictographs = v.pictographs)

There are also views for uses of procedures, functions, parameters, constants,

spaces, and trpe names.

The definitions of an object, such as a module, are also represented as a

view of the corresponding implementation object. For example, there is a view of

procedures called proc-spec defined as follows:

range of p is procedures
define view proc-use (

id = p.id, pictographs = p.pictographs,
proc-class = p.proc-class, paramlists = p.paramlists

Using views keeps the information on a procedure in a single place, but allows

either the definitions or implementation of the procedure to be displayed.

5.3.2 Representation of Pictographs

The pictograph associated with each relation and view specifies how a tuple

belonging to the relation or view should be printed. A pictograph is represented

by a format string containing meta-characters to indicate where and how the

fields of a tuple should be displayed. For example, the pictograph for the var-use

VleW lS

64

%2r

The "%" character indicates that the value of a field is to be displayed at the

current output location, and the digit following the ''%" (in this case a "2") indi

cates which field is to be displayed.

The character following the digit indicates how the field should be

displayed. For the var-use example, this character is an "r" and means that the

field is a reference to another tuple that should be retrieved and displayed

according to the pictograph for its relation.

The "r" also indicates that the name of the relation to which the field

refers is the same as the name of the field. For the example, the pictograph

"%2r" for a var-use tuple therefore specifies that the second field is a reference to

a tuple in the pictographs relation, because the name of the second field is "picto

graphs".

To indicate that a field to be displayed is a reference to some relation that

is designated by an adjacent field in the tuple, the character "R" is used. For

example, the variables relation, which is defined as

variables(id = integer, pictographs = i4, type-rei= i4, type-id = i4),

has as its pictograph the following:

%2r: %3R

The "3R" means the third field of the relation contains the UID for a relation,

and the next (fourth) field contains the UID of a tuple in the relation.

Other characters to indicate how to display a field are "s" "d" "o" "c"
' ' ' '

and "f" for character string, decimal integer, octal integer, single character, and

real number. In addition, the character """ means to use the pictograph associ

ated with the current tuple in the pictof relation, rather than the pictograph for

the tuple's relation. This facility is used for displaying procedure and function

calls, since calls to different procedures are displayed differently. It avoids the

need for having a separate view defined for each individual procedure and func

tion.

5.3.3 Semantic Constraints

In addition to the relations and views describing the structure of programs,

we intended to specify constraints on the data to ensure that the program infor

mation was meaningful. For example, the type-rei and type-id fields of the vari

ables relation together refer to a tuple that contains the type of the variable.

The type-rei field contains the UID of some type relation (e.g., typenames, arrays,

or records).

65

To ensure that the type-rei field actually refers to a type relation and not

something else (e.g., forstmts), we would like to use database integrity con

straints. If we had a relation called "types" that contained references to each

relation that is legitimate as a type, then we would specify an integrity constraint

as follows:

range of t is types
range of v is variables
define integrity on v is v.type-rel = t.legit-type-rel

INGRES does not currently support this kind of integrity constraint. We

therefore do not currently have any provisions within the database for ensuring

the integrity of relation references, or enforcing any other constraints.

Parse is assumed to generate only correct program information into the

database. We now turn to the problem of generating this information from

~lodel text.

5.4 Parsing Model

The parsing necessary to compute the database tuples from text is the same

as that which is performed during the first phase of a compiler. Ideally, we

would have taken the first phase of the existing Model compiler and used it as

the basis for parse. We spent some time trying this approach, since it would

have guaranteed that our parser· would recognize exactly the same language as

the compiler, but we decided against pursuing it further for the following reasons:

1. The existing compiler was (and still is) quite slow. Since it is itself writ

ten in Model, we found it took an undesirably long time to test

modifications.

2. Although the control structure of the compiler corresponded to the basic

phases (parsing, name resolution, semantic checking, and code genera

tion), the data structures contained a mix of information from all

phases. They also did not match our schema very closely.

3. The compiler uses ad-hoc recursive descent parsing, making it diffic-ult

to build our own data structures.

Undoubtedly, (1) and (2} were the main reasons our attempt to use the

existing compiler was not successful; (3) convinced us to start over using the

parser generating program YACC [Johnson 78]. Using YACC, we were able to

quickly construct a parser based on the grammar in the appendix of the Model

reference manual.

66

5.4.1 Interfacing to INGRES .

\Ve initially tried writing tuples to the database while parsing, but this

turned out to be undesirable since our schema was designed to contain references

to objects, whereas information from parsing yields references to names. For

example, the usage of a variable named "i" can be recognized during parsing, but

which object it refers to cannot be determined because Model allows forward

referencing.

The situation is more complicated for procedure and function calls, since

Model allows (and OMEGA will also) the same name to be used for different pro

cedures or functions so long as the types of the parameters differ. For example,

"+" used on two integers is a different function from "+" when used on two real

numbers.

As we showed in Chapter 4, our visual interface to the program. database

largely eliminates the process of resolving names to objects present in a tradi

tional text interface. This level of interface, combined with our experience with

INGRES performance, made it more desirable to have parse do semantic analysis

than to perform analysis directly on the information in the database. We there

fore changed the parsing phase to build data structures for the program informa

tion in memory, and then added a phase for analysis of these structures and a

final phase to dump the information into the database.

The analysis phase performs both name resolution and some semantic

checking, though we were not concerned with catching all semantic errors since'

we planned to enter only correct programs into the database. Semantic checking

was helpful, however, in detecting bugs in parse as it occasionally reported errors

for correct programs.

5.4.2 Name Resolution

Since in Model, any object can be referenced before it is defined, we con

struct special objects during parsing that are references to identifiers. From the

syntactic context we know whether the reference is to a procedure, function,

type, or else one of parameter, variable, and constant. Definitions of objects are

also entered into a traditional symbol table.

Model allows blocks to be nested and has scope rules similar to Pascal.

Since name resolution cannot be done during parsing, we cannot discard symbols

at the end of the block in which they are defined. Resolving names after com

pleting parsing also means that the symbol table lookup routine cannot assume

that symbols are ordered by nesting depth.

To handle this forward referencing, each symbol in the symbol table is asso

ciated with a particular block and the block is used along with the identifier as a

key for insertion and lookup. Since blocks are represented as pointers and

identifiers are represented as pointers into a string table, we can use these two

addresses as a key and therefore make the cost of hashing and comparing keys

67

very cheap.

After parsing, we traverse all the objects in the program and attempt to

resolve any of the references. The basic algorithm to resolve a reference could be

written .in Pascal as follows:

procedure resolve(name : Identifier; var sym : Symbol);

var b : Block;
done : boolean;
s: Symbol;

begin
done := false;
b := curblock;
repeat

s := lookup(name, b);
if s < > nil then begin

done := true;
sym := s;

end else begin
b := outerblock(b);
if b = nil then begin

done := true;
writeName(errorFile, name);
writeln(error File, ' undefined');

end
end

until done;
end

Parse also uses two variations of this algorithm, one for procedures or func

t:ons and one for types. Procedure and function names can be used more than

once within the same scope if each definition has a different set of parameter

types. The effect of this facility is that for each block it is necessary to iterate

over all the procedures and functions in the block with the desired name and

check to see if their parameters have matching types. It is not sufficient to stop

when a match is found, since more than one procedure or function might satisfy

the conditions and this should cause an error message to be printed.

Some procedures and functions (e.g., "='')are built-in but can be overriden

by a user definition. If two functions match a call but one is b'Iilt-in, then this is

not an error and the call should be resolved to the user-defined function. ·

The other variation of the resolution algorithm is for types. In Model,

abstract types (called spaces) can be parameterized by one or more types. Each

distinct use of a space causes a new instance of the body of the space to be

created with the actual types substituted for the formal type parameters. The

approach to resolving a reference to a space is similar to that for a procedure or

function call, except that there are neither conflicts nor builtin spaces, and if a

68

reference is not resolved then a new instance of the space should be created.

5.4.3 Current Status

The implementation of parse is complete. Though it has not been
rigorously tested or heavily used, it has successfully parsed, performed type
analysis, and stored both the DEMOS kernel and the Model compiler (over 15,000

lines) into an INGRES database.

Parse is approximately 10,000 lines of C code, and took a total of about 4

months full-time effort to develop. We chose C to make interfacing to YACC
easy; we would have preferred a language that provides for more semantic check

ing at compile time.

5.5 Viewing Programs from the Database

Although it has been necessary at times, looking at programs as tuples in
INGRES is quite painful, being similar in many respects to looking at a hex
memory dump. The purpose of implementing peruse was as much to see that the
information was really in the database as to experiment with the user interface
ideas presented in Chapter 4.

Since we did not have the graphics capabilities we wished and since we
could not hope to implement the entire interface in a short time, we focused our
implementation efforts on two areas: the interface between peruse and INGRES
and the management of the screen area. These two areas are related by the con
vention that each program thread (i.e., view of the database) is displayed in a
different window on the screen.

A query, then, causes the information to be retrieved from the database and
displayed into a new window. In the four subsections that make up the
remainder of this section we discuss how peruse interfaces to the database, how
information is displayed on the screen, how commands are entered and processed,
and what the current status of the implementation is.

5.5.1 Database Interface

The first version of peruse had static knowledge of the kinds of objects and

corresponding names of relations in the database, as well as having explicit code
for displaying objects. This version enabled us to see the information in the
database displayed as normal program text. However, we quickly ran into the

following three problems:

1. It was very expensive to display the body of a procedure. For a 10-line
procedure it took over 20 seconds of CPU time (about 2 minutes elapsed
time) on our VAX.

69

2. Every time the schema changed, a substantial portion of peruse had to

be changed.

3. The general concept of a pictograph, as presented m Chapter 4, was

missing from the implementation.

In the next version of peruse we therefore looked at improving performance and

generalizing it, both by removing most schema dependencies and by using picto

graph information stored in the database to drive the display algorithm.

5.5.1.1 Improving Performance

The problem with response time was due to retrieving each object with a

separate query. For example, suppose the user wishes to see the body of a pro

cedure. This object is represented by a single tuple from the implementation

view of the procedures relation. \Vhen this tuple is displayed, all the different

objects within the procedures (statements, variables, etc.) have to be retrieved.

The problem of processing a large number of small queries is a general one.

Queries have an inherent amount of overhead due to the parsing, access strategy

selection, and lockir.~~; that is necessary. Our first attempt to solve this problem

was to retrieve all the objects in a procedure at once rather than through indivi

dual queries. To do this we had to know in what procedure every object was

defined. \Ve kept this information first as a field in each object and later in the

contains relation.

Using the contains relation worked well for very small programs, but was

too expensive for larger programs, such as the DEMOS kernel. A single query

involving a join of contains (over 20,000 tuples) with stmtlists (over 1,000 tuples)

took over 13 seconds of CPU time.

Keeping the procedure where an object belonged in a field within the object

was not as expensive, but still required a query for every relation to retrieve all

the objects in a particular procedure. For example, even if a procedure did not

have any variables defined in it, a query would be generated on the variables rela

tion.

As mentioned in Chapter 3, retrieving all information for a given procedure

is only helpful for one particular, albeit common, view. When some other view is

desired, such as a collection of statements or declarations that cross procedure

boundaries, it is not desirable to retrieve all the information associated with all

the different procedures.

We therefore went back to the approach of retrieving a tuple at a time and

tried to reduce the amount of time it took to do an individual retrieval. The

most frequent queries were of the form

70

range of t is some-relatio_n
retrieve (t.all) where t.id = some-id

for a given UID and relation. To minimize the searching necessary to perform

this query, we advised INGRES to keep a hash table on all relations using their

id field as the key.

Knowing the exact form of the query and the appropriate access strategy

for it, we modified peruse to perform these queries using the INGRES access

methods directly. This approach avoids the overhead associated with query pro

ces~ing, and in addition, since INGRES runs as a process separate from peruse,

also avoids the overhead of exchanging messages via Ul\;1X pipes.

This modification gave the effect of compiled queries, since what we did was

"hand-compile" a particular class of queries. These queries still ran as separate

transactions, meaning no pages were buffered across queries .. To simulate tran

sactions, or more precisely buffering across queries, we modified peruse to keep

relations open rather than closing them at the end of each query. The table

below shows the performance of peruse zooming in on the body of 5-line program

using standard queries, hand-compiled queries, and hand-compiled queries with

buffering.

Queries # tuples
#pages CPU time Elapsed time

read (seconds) (seconds)

standard 36 281 30.7 40

compiled 36 156 4.8 13

buffered 36 93 3.4 7

Compiling queries had a dramatic effect on performance, reducing CPU

time by more than a factor of six, while buffering had a more modest effect. This

effect might be more pronounced for larger programs. These results indicate that

a production implementation of OMEGA requires a database system that can

compile queries. Some buffering capability would also help performance.

5.5.1.2 Generalizing Peruse

Eliminating dependencies on the database schema in peruse code required a

general mechanism for retrieving, displaying, and updating information based on

input commands. We implemented this mechanism by using a dynamic schema

rather than a static one, and by using the pictograph for an object to display the

object.

Using a dynamic schema means keeping the information on how to inter

pret a particular command for a particular class of objects in the database rather

than having it written into the peruse code. For example, peruse provides a com

mand to "zoom in" on an object. Originally, the semantics of zooming were

made explicit for particular program objects by having a different routine for

each class of object (programs, procedures, etc.). The routine for program

71

objects, for example, generated a query to retrieve and display the body of the

main procedure in the program.

To generalize zooming in on a particular object we created the oodyof rela

tion with two fields, one that names a definitions view and one that names the

implementation view. This relation is then used to find the implementation view

-for the object's class. The pictograph for the implementation view indicates how

to display the body of the object.

For example, bodyof contains the tuple

(var-use, variables).

If the user asks to zoom in on the usage of a variable, this tuple is used to

retrieve the tuple in the variables relation with the same UID as the specified

tuple in the var-use view. Using the pictograph for variables, .the variable's name

and type are then printed.

A consequence of accessing the schema dynamically is that most operations

cause several accesses to the database and therefore are slowed down substan

tially. Since many of these accesses are to the abstraction, relation, attribute, and

pictographs relations, we read a copy of these relations into memory when start

ing up and access this copy instead of the database.

5.5.2 Display Management

\Vhen a view of the database is requested, the information is retrieved and

transformed into text using pictographs and stored into a picture. During this

transformation, each object and its location within the picture is recorded in a

map. Afterward, a rectangular portion of the screen, called a window, is allocated

and as much of the picture as will fit is displayed in the window. The associated

picture, map, and window are kept together in a data structure called a scene.

Figure 5.3 shows an example of a scene.

Also associated with each scene is a cursor that refers to the current pro

gram object of interest in the associated view. This cursor is not a character cur

sor as in a text editor since the object can be represented by more than one char

acter (or even more than one line) in the picture. The text associated with the

current object is highlighted on the screen.

\Vindows are allocated at a static location and have a fixed size; the sophis

ticated allocation scheme discussed in Chapter 4 has not been implemented. The

screen is divided in half horizontally and vertically to form four partitions that

are used as windows. This partitioning does not include the top and bottom lines

of the screen, which are used for status information and error messages respec

tively. When a new window is to be allocated, peruse uses a window that is

either unallocated or least recently touched.

B

~

~: 'C
~ '

~ '
~ ~

EJ
' '
' ',. ··--· -· --··;.....

~ - ~
~ -

~ -~

~

window

picture '

i
L_
map

pictographs

Fig. 5.3: The structure of a scene Jn peruse.

72

program

thread

73

5.5.3 Input Commands

Commands are entered by a single keystroke, and specify an operation on

the current object in the current scene. The table below shows the commands

that are recognized by peruse (the notation "tX" indicates the control key is held

down while pressing the key "x").

key command

tF scroll forward
tB scroll backward

tR rotate left
iG rotate right
tD redraw
s select
s pick up
w move cursor forward
b move cursor backward
e zoom m
v· show slots
c create
f fill in

The "select" command requests that the scene's cursor be moved to the

object nearest the input cursor. Ideally, the 'input cursor is controlled by a point

ing device; however, it can also be controlled by cursor movement keys. "Pick

up" is just like "select" except that the object is pushed on a stack for use with

future commands.

An input cursor refers to a particular character location and therefore could

be ambiguous, e.g., seJ.~cting the "a" in "a := b + c" could refer to either the

variable named "a" or the entire assignment statement. To allow fine tuning ur
the cursor position, the "move cursor forward" and "move cursor backward"

commands move the cursor according to the order in which the objects were

traversed when they were displayed.

The "zoom in" command finds an object's relation UID in the bodyof rela

tion and uses the UID of the associated relation to display the object. For exam

ple, since the tuple (proc-spec, procedures) is in the bodyof relation, pressing

"zoom in" when the current object is a proc-spec causes a new window .to be

allocated and the body of the procedure to be displayed in it.

The "create" command creates a new object with the same relation as the

current object. The "show slots" command forces unfilled fields of an object to

be displayed as "<relation-name>"; they are not normally displayed. The "fill

in" command can be used to set the value of an unfilled field to either a reference

to an object that has been picked up, or a literal value (e.g., pictograph or

integer) entered by the user.

74

5.5.4 Current Status

Peruse is continually being changed in an attempt to evolve it tov.,·ard the
interface described in Chapter 4. The first version used a static schema and
could zoom in on p~:ogram objects only. It also provided a command for finding
all the uses of an object, causing a set of predetermined queries to be sent to
INGRES and the results displayed. This facility demonstrated the power of
using a database system, since providing it required very little additional code in
peruse.

The second version of peruse used a dynamic schema and direct access to
the database to dereference UIDs. It displayed objects using the pictographs
stored in the database, but it did not allow objects to be created or modified. It
did provide multiple windows, unlike the first version, but they were allocated in
a static location and had a fixed size.

The third, and current, version completes the basic capabilities of the inter
face. Although it does not yet manage windows in the desired manner, it does
have the ability to create objects and fill in slots. General queries and global
relational updates are not currently supported, but only require query (or update)
objects to be able to be defined and executed. Executing a query involves
translating it into QUEL and sending it to INGRES, with the result displayed in
a newly-allocated window.

5.6 Performance

Throughout this thesis we have focused on power and largely ignored per
formance. This focus has not been because we think performance is unimportant,
but because experience has led us to prefer to tune a general, powerful solution ro
a problem than to extend the power of an already tuned system.

Since we have not had the time to do a careful analysis of the performance
of any of the pieces of OMEGA, it is somewhat misleading to present any execu
tion time measurements of parse or peruse. Nonetheless, our experience is
undoubtedly of interest, so we present some simple measurements.

5.6.1 Execution Time

Figure 5.4 sho,vs a table with execution times for the time it takes parse to
process the DEMOS kernel and store the resulting information in the database,
and the time it takes peruse, using compiled queries and buffering as described
earlier, to zoom in on the body of the main procedure of DEMOS. For com
parison purposes, the time parse takes to perform the parsing and type analysis
phases, without storing into the database, is also shown.

75

Operation
CPU time Elapsed time
(seconds) (mm:ss)

parsing DEMOS and storing in database 422.1 27:29

parsincr DEMOS only 53.3 1:32

peruse main body 276.6 11:36

Figure 5.4: Time measurements for parse and peruse.

The time it· takes to zoom in on the main body of DEMOS is an interesting

benchmark, but does not reflect actual response time since the main body of

DEMOS is fairly large (over 3000 tuples, the equivalent of nearly 1000 lines of

text). Ideally, peruse should stop retrieving tuples when the output will no

longer fit on the screen, and the picture data structure that is built from the out

put of a query should be filled on demand instead of all at onc"t•.

5.6.2 Storage Requirements ,

The table in Figure .5.5 shows the number of tuples and total size of the

largest relations in the database. Although the total size is close to that of the

corresponding text, this is somewhat misleading because it does not include space

for indices (in this case hash tables) or comments. The elimination of comments

was done for simplicity; there is no reason they could not also be stored.

76

relation # tuples
width total size
(bvtes) (bvtes)

pictog;raphs 1563 84 131292
tvpeof 4521 16 72336
exprlists 3507 16 56112
parameters 1720 20 34400
functions 712 40 28480
stmtlists 1567 16 25072
fieldrefs 1471 16 23536
paramlists 1720 12 20640
decls 1180 16 18880
fcalls 1473 12 17676
asg_stmts 812 20 16240

.Pictof 1001 12 12012
procedures 399 24 9576
condlists 314 24 7536
intcons 700 8 5600
variables 338 16 5408
callstmts 448 12 5376
fields 335 16 5360
constants 292 16 4672
ifthens 290 16 4640
OTHERS 2115 - 38372

total 26515 - 536316

size of text - - 418792

Figure 5.5: Space usage in database for DEMOS kernel.

5.6.3 Analysis

The critical performance problem is response time in peruse, which is

roughly an order of magnitude too slow. In general, the database system should

be able to use main memory and semantic information, such as denoted by tuple

references, to provide substantially better performance. Particular issues in the

performance of current relational systems are discussed in more detail in (Cham

berlain, et al. 81], (Stonebraker, et al. 83], and [Bitton, DeWitt, Turbyfill83].

Improved data management algorithms will be a major factor in improving

the performance of OMEGA, the other major factor will be running the system

on faster hardware. Within five years it is likely that most programmers will use

personal workstations that have the same or greater computing capacity than the

VAX that we currently share with 10 to 20 other users.

77

The size of programs and in_formation pertaining to programs is growing,

meaning it will be necessary to continue to analyze system performance and look

for techniques to improve it. We are convinced the use of a general-purpose

database system to manage all program information will soon be practical in

terms of performance when compared with conventional systems. The algo

rithmic complexity of database algorithms is sublinear whereas the text-oriented

algorithms require linear time; it is only a matter of time be.fore the increase in

volume of information and reduction in database overhead makes the database

approach faster.

It is true that it will always be possible to construct a special-purpose data

base system tuned to managing program information that is faster than the

general-purpose system. Similarly, it is always possible to write assembly

language by hand that executes faster than that generated by a compiler. How

ever, just as for writing in a high-level language, it will be worth the slight loss in

efficiency to use the more general, better supported, and mqre reliable system.

General-purpose database systems are rapidly approaching this threshold of being

cost-effective for use in managing program information.

5.7 Conclusions

We did not attempt a complete implementation of OMEGA; such an effort

would have been premature. Instead we have experimented with the program

database and user interface pieces of the system.

"Ve have built parse, a program that takes Model source text and stores all

the information in the program into a database managed by INGRES. Parse

recognizes the full Model language and has been used to load a medium size pro

gram (DEMOS) into the database.

"-v\r e have also built peruse, a program that displays information from the

database onto the screen in a traditional text format. Peruse processes single

keystroke input commands that allow the full power of the database to be

accessed without using a command syntax or names to refer to objects.

Overall, we are pleased with the results of using INGRES. Although there

are problems with performance, we have not had to worry at all about managing

permanent storage or processing queries. The ability to define general views was

particularly useful.

Our experience interfacing to INGRES has affected the ideas presented in

Chapter 3. In particular, doing this implementation and examining the resulting

problems helped produce the idea of tuple references.

We have not had as much experience in implementing the user interface as

we would have liked, due both to time limitations and lack of hardware with the

power we wish to use. Whereas with the database we had a powerful, albeit

slow, system, we simply did not the have terminal capabilities with which we

wanted to experiment.

78

y.,r e did implement enough of_ the user interface to realize that window allo

cation was an important issue. This realization was a surprise; we had expected

to be able to use an existing window allocation scheme.

Chapter 6

Conclusions ~nd Future Directions

And here I sit so patiently,
waiting to find out what price
you have to pay to get out of
going through all these things twice.

- from the song Stuck inside of Mobile with the Memphis Blues Again

by Bob Dylan

6.1 The Software Beast {reprise)

79

We began this thesis by describing our perception of why software is a

"beast" that is so difficult to control. The major reason for the beast's strength

is that in existing environments it is difficult for programmers to get a good view

of software that has already been written, and therefore constantly re-implement

algorithms.

To attack these problems we focused on system support for viewing and

manipulating existing pieces of software. Now, after visiting other programming

environments, traveling through the land of relational database systems, and syn

thesizing a user interface centered on the use of pointing, we conclude by sum

marizing the ideas of our work and describing problems for future research. At

the end of the chapter we finish this dissertation with some general thoughts on

our expenence.

6.2 Summary of Work

The ideas in OMEGA have been aimed primarily at supporting flexible

visual and logical manipulation of large software systems. To support manipula

tion of programs, we have designed an interface to a relational database system

to provide a mechanism for querying and modifying software. \Ve have built an

experimental interface to the INGRES database system and used it to store and

retrieve programs written in Model.

The use of a database system provides a more general and powerful

mechanism for manipulating software than is available in current software

development environments. If there is one point in this thesis that is more

important than any other, it is that using a general-purpose database system to

manage program objects offers significant advantages over text-oriented or

special-purpose systems.

80

The medium of communication between programmer and system is equally

important as the data that is transmitted. We have designed a medium similar

to that provided by Smalltalk, generalizing the interface to consistently use

pointing at objects as the means of conversing.

Pointing avoids traditional obstacles to software development such as syn

tax errors and mistyped identifiers. As a result, concepts that are normally

offered in separate languages (e.g., pipes in UNIX and procedures in Pascal) can

be integrated together without sacrificing the visual presentation.

Using the database concept of integrity constraints adds interactive seman

tic checking to OMEGA so that errors can be detected as soon as possible. This

facility, combined with an extended notion of a database transaction, provides a

systematic and flexible mechanism for ensuring that only meaningful (though not

necessarily correct) programs objects are created.

We have implemented the basic elements of the user interface to allow

browsing and querying of information in the database using pointing. Our imple

mentation uncovered important problems in allocating and positioning windows,

and we have begun to develop solutions to these problems. Due to time and

hardware constraints, we have not been able to experiment with this interface

and satisfactorily evaluate its usefulness.

6.3 Future Directions

Although this chapter completes this dissertation, there is much work to be

done to further test and refine our ideas as well as solve new problems. Overall,

we would like to continue trying out ideas that will take the implementation of

OMEGA toward a complete and usable system, both for our own use in further

experimentation and to confirm that our approach is practical. In addition, we

would like to generalize our solutions so that they can be applied to other

interactive computing environments.

There are many problems that need to be solved to achieve these goals.

\Ve will discuss the following areas in more detail:

• analyzing and improving the performance of the databa..<>e interface,

• executing and debugging programs stored in the database

• experimenting with the user interface on a graphics terminal

• application to office information and VLSI design environments

81

6.3.1 Database Interface

Currently, the database system is certainly the bottleneck of OMEGA in

terms of performance. In Chapter 3 we suggested tuple references as a way of

providing the database system with the information .necessary to enable it to

cache and prefetch tuples in memory, and thereby reduce the cost of simple

queries that retrieve individual tuples. Caching in general offers great gains, but

conflicts with equally important crash recovery and concurrency control facilities.

General techniques for caching data in memory and processing queries on it

will even be more important for larger databases. The database we created in

our implementation corresponds to a relatively small piece of software (about

10,000 lines). If this approach is to be applicable to systems several orders of

magnitude larger, we must be able to use logical information in the database to

restrict the amount of data that has to be searched. For example, a programmer

working on a single module will rarely access information in the database outside

that module.

In Chapter 3 we also noted that for certain queries we need to be able to

search the transitive closure of a binary relation. Although the semantics of this

operation are well-defined, it is not immediately obvious what the correct imple

mentation should be. It may be desirable to retain a previously computed clo

sure, but the tradeoff in additional cost for updates needs to be examined more

closely.

Finally, our experience is limited to a single data model, schema, and data

base system. It would be helpful in understanding the effects of database system

facilities on the performance of OMEGA to be able to compare the same opera

tions with different systems.

Although peruse has evolved to become schema independent, it is still

dependent on INGRES. We need a single interface that can be adapted to

different database systems.

6.3.2 Execution and Debugging

For OMEGA to be usable, it must be possible to run the programs that are

stored in the database. Generating code is primarily a matter of traversing the

information in the database, but there are interesting issues concerning what

information should be stored back into the database (e.g., storage locations, a

record of optimizations performed) and what additional information should be

kept in the database incrementally to aid code generation (e.g., data flow infor

mation).

The question of what information a code generator should add to the data

base is related to the debugging facilities that are to be provided. In O.tvfEGA,

the program monitor will undoubtedly need to share information with the code

generator. Further implementation of both creating and debugging executable

programs is necessary to determine the best way to support these facilities.

82

In Chapter 4 we shm.,:ed how to specify debugging events as relational
qualifications on the information in (or virtually in) the database. This approach
provides a powerful, high-level description of events, but complicates the transla
tion of these conditions into low-level actions such as machine traps on references
to particular instructions or data.

The optimal translation of an event, the one that degrades execution the
least while correctly detecting the event, is dependent on the target machine,
operating system, code generator, and language. \Ve nee(! ::. :node! and analysis
of target hardware systems coupled with a characterization of debugging events
that provides an algorithm for optimal translation.

6.3.3 Graphical Interface

Although we have designed and partially implemented the graphical inter
face described in Chapter 4, we have not been able to experiment with using it.
We would like to actually use the interface to evaluate how effective it is in
manipulating programs.

We suspect that relying on pointing may at times be verbose; that is, many
objects may have to be selected for a relatively simple operation. To solve this
problem we would need to provide some "shorthand" for this class of operations.
To correctly "tune" the user interface in this manner requires more experimenta
tion with its implementation.

Fundamentally, we want to be able to easily modify a piece of software for
a slightly different use. We therefore also need to experiment with the user inter
face to find out how conveniently it allows these kinds of manipulations, and
work to solve problems that may be encountered.

6.3.4 Application to Other Environments

Many of the problems in managing software are general problems that arise
in other applications. We have tried to find general solutions to the specific
problems of a programming system, and would like to see if these solutions can
be applied to other environments.

The model of a graphical, pointing-oriented interface to a general-purpose
database system is representative of many interactive computing systems. \Ve

would particularly like to experiment with our ideas for office information and
VLSI design environments.

Forms [Tsichritzis 83] in office systems are similar in many ways to our
abstractions and pictographs, and the problems of VLSI design data [Katz 82] are
quite similar to our problems in managing program information. Both environ
ments have been developed independently of software environments, it would be
beneficial for both areas to look into exchanging and merging ideas.

83

6.4 Concluding Remarks

Just as we have promoted the use of existing software in the construction of

new programs, throughout this thesis we have tried to use ideas from other pro

gramming environments and research on database systems to design and partially

implement OMEGA.

To adapt ideas such as the relational data model and the Smalltalk

medium, we first had to understand and generalize the problems we were trying

to solve. An important part of understanding and generalizing these problems

depended on separating the semantics of each problem from a potential imple

mentation of its solution.

We hope by generalizing and building upon previous good ideas this thesis

is a step toward a time when building upon good software is easy and straightfor

ward, not weighed down by problems of information management and visual

presentation.

[Ada 82]

84

Bibliography

Reference Manual for the Ada Programming Language, U. S. Depart
ment of Defense, July 1982.

[Arnold 80]
Arnold, K., "Screen Updating and Cursor Movement Optimization: A
Library Package", Computer Science Division, University of California,

Berkeley, 1980.

[Baskett, Howard, and Montague 77]
Baskett, F., Howard, J. H., and Montague, J. T., "Task Communication
in DEMOS", Proceedings of the Sixth Symposium on Operating Systems

Principles, November 1977.

[Bitton, De\Vitt, and Turbyfill 83]
Bitton, D., DeWitt, D., and Turbyfill, C., "Benchmarking Database Sys
tems: A Systematic Approach", to appear in Proceedings of the Int.
Conf. on "Very Large Data Bases, October 1983.

[Bonanni and Glasser 77]
Bonanni, L. E., and Glasser, A. L., "SCCS/P\VB User's Manual", Bell

Laboratories, 1977.

[Cattell 83]
Cattell, R., "Design and Implementation of a Relationship-Entity
Datum Data Model", Xerox PARC Tech. Report CSL-83-4, May 1983.

[Chamberlain, et al. 81]
Chamberlain, D. D., Astrahan, M. M., King, W. F., Lorie, R. A., ~Iehl,
J. W., Price, T. G., Schkolnick, M., Selinger, P. Griffiths, Slutz, D. R.,

\Vade, B. W., and Yost, R. A., "Support for Repetitive Transactions

and Ad Hoc Queries in System R", ACM Transactions on Database Sys
tems, Vol. 6, No. 1, March 1981.

[Chen 76]
Chen, P. P., "The Entity-Relationship Model - Toward an Unified View

of Data", ACM Transactions on Database Systems, Vol. 1, No. 1,
March 1976. ·

[Codd 70]
Codd, E. F., "A Relational Model of Data for Large Shared Data

Banks", Communications of the ACM, Vol. 13, No.6, June 1970.

85

[Codd 79]
Codd, E. F., "Extending the Database Relational Model to Capture

More Meaning", ACM Transactions on Database Systems, Vol. 4, No. 4,

December 1979.

[Conway and Constable 76]
Conway, R., and Constable, R., "PL/CS - A disciplined subset of

PL/1", Tech. Report No. 76-293, Dept. of Computer Science, Cornc;1

University, 1976.

[Dayal and Bernstein 82]
Dayal, U., and Bernstein, P., "On the Correct Translation of Update
Operations on Relational Views", ACM Transactions on Database Sys

tems, Vol. 7, No. 3, September 1982.

[Deutsch and Taft 80]
Deutsch, P., and Taft, E., eds., "Requirements for an Experimental Pro

gramming Environment", Xerox Corporation, Palo Alto Research
Center, June 1980.

[Eswaran 76]
Eswaran, K., "Specifications, Implementations, and Interactions of a
Trigger Subsystem in a Integrated Database System", IB1\1 Research,

RJ 1820, San Jose, Ca., August 1976.

[Feldman 78]
Feldman, S. 1., "Make - A Program for Maintaining Computer Pro
grams", Bell Labc:·;~tories, Murray Hill, New Jersey, 1978.

[Goldberg and Robson 83]
Goldberg, A., and Robson, D., Smalltalk-80: The Language and Its

Implementation, Addison-Wesley, Reading, Massachusetts, 1983.

[Green, et al. 81]
Green, C., Phillips, J., \Vestfold, S., Pressburger, T., Kedzierski B.,

Mont-Reynaud, B., Tappel, S., "Research on Knowledge-Based Pro
gramming and Algorithm Design - 1981", Memo KES.U.81.2, Kestrel

Institute, Palo Alto, California, 1981.

[Habermann, et al. 82]

[Ivie 77]

Habermann, A. N., Ellison, E., Medina-Mora, R., Feiler, P., Notkin, D.,

Kaiser, G. E., Garlan, D. B., and Popovich, S., "The Second Compen
dium of Gandalf Documentation", CMU Department of Computer Sci

ence, May 24, 1982.

lvie, E. L., "The Programmer's \Vorkbench - A Machine for Software

Development", Communications of the ACAJ, Vol. 20, No. 10,

October 1977.

86

[Johnson 78]

[Joy 79]

[Katz 82]

Johnson, S., "Y ace: Yet Another Compiler-Compiler", Bell Labora

tories, Murray Hill, NJ, 1978.

Joy, William N., "An Introduction to Display Editing with Vi", Univer
sity of California at Berkeley, Berkeley, CA, 1979.

Katz, R., "A Database Approach for Managing VLSI Design Data",
Proceedings of the 19th Design Automation Conference, June 1982.

[Kernighan and Mashey 81]
Kernighan, B., and Mashey, J., "The Unix Programming Environment",

Computer, Vol. 14, No. 4, April 1981.

[Kernighan and Ritchie 78]
Kernighan, B., and Ritchie, D., The C Programming Language,

Prentice-Hall, Englewood Cliffs, New Jersey, 1978.

[Medina-Mora and Feiler 81]
Medina-Mora, R., and Feiler, P., "An Incremental Programming

Environment", IEEE Transactions of Software Engineering, Vol. SE-7,

No. 5, September 1981.

[Morris 80]
Morris, J. B., A Manual for the l.Jodel Programming Language, February

1980.

[Powell and Linton 83a]
Powell, M., and Linton, M., "A Database Model of Debugging",

accepted for publication in Journal of Systems and Software. Prelim

inary draft in Proceedings of the ACM SIGSOFT-SIGPLAN Symposium

on High-Level Debugging, March 1983.

[Powell and Linton 83b]
Powell, M., and Linton, M., "Database Support for Programming
Environments", Proceedings of the Database Week Special Session on

Databases for Engineering Applications, May 1983.

[Powell and Linton 83c]
Powell, M., and Linton, M., "Visual Abstraction in an Interactive Pro
gramming Environment", Proceedings of SIGPLAN 83: Symposium on
Programming Language Issues in Software Systems, June 1983.

[Rochkind 75]
Rochkind, M. J., "The Source Code Control System", IEEE Transac

tions on Software Engineering, Vol. SE-1, December 1975.

87

[Rowe 82] .
Rowe, L., private communication.

[Rowe, et al. 81]
Rowe, L., Cortopassi, J., Doucette, D., and Shoens, K., RIGEL

Language Specification, Comp. Sci. Div., Dept. of EECS, University of

California at Berkeley, June 1981.

(Schmidt 82]
Schmidt, E., "Controlling Large Software Development in a Distributed

Environment", Xerox PARC Tech. Report CSL-82-7, December 1982.

[Softech 79]
UCSD Pascal User Manual, Softech Microsystems, Inc., San Diego, Cali

fornia, 1979.

[Stonebraker 82]
Stonebraker, M., "Application of Artificial Intelligence Techniques to

Database Systems", Electronics Research Laboratory, University of Cali

fornia, Berkeley, Ca., Memo 82/31, May 1982.

[Stonebraker, et al. 82]
Stonebraker, M., Stettner, H., Kalash, J., Guttman, A., and Lynn, N.,

"Document Processing in a Relational Data Base System" Electronics

Research Laboratory, University of California, Berkeley, Ca., Memo

82/31, May 1982.

[Stonebraker, et al. 83]
Stonebraker, M., \Voodfill, J., Ranstrom, J., Murphy, M., Meyer, ~1.,

and Allman, E., "Performance Enhancements to a Relational Database

System", ACM Transactions on Database Systems, Vol. 8, No. 2,

June 1983.

rstonebraker, Johnson, and Rosenberg 81]
Stonebraker, M., Johnson, R., and Rosenberg, S., "Extending INGRES

with a Rules System", Electronics Research Laboratory, University of

California, Berkeley, Ca., Memo 81/93, December 1981.

[Stonebraker and Kalash 82]
Stonebraker, M., and Kalash, J., "TIMBER: A Sophisticated Relation

Browser", Electronics Research Laboratory, University of California,

Berkeley, Ca., Memo 82/17, January 1982.

[Stonebraker and Keller 80]
Stonebraker, M., and Keller, K., "Embedding Hypothetical Data Bases

and Expert Knowledge in a Data Manager", Proceedings of the 1980

ACA1-SIG"~10D Conference on .Management of Data, Santa Monica, Ca.,

May 1980.

88

[Stonebraker and Rowe 82] .
Stonebraker, M., and Rowe, L., "Database Portals: A New Application

Program Interface", Electronics Research Laboratory, University of Cal

ifornia, Berkeley, Ca., Memo 82/80, November 1982.

[Stonebraker, Wong, and Kreps 76]
Stonebraker, M., Wong, E., and Kreps, P., "The Design and Implemen

tation of INGRES", ACM Transactions on Database Systems, Vol. 1,

No. 3, September 1976.

[Teitelbaum and Reps 81]
Teitelbaum, T., and Reps, T., "The Cornell Program Synthesizer: A

Syntax-directed Programming Environment", Communications of the

ACM, Vol. 24, No. 9, September 1981.

[Teitelman and Masinter 81] .
Teitelman, W., and Masinter, L., "The lnterlisp Programming Environ

ment", Computer, Vol. 14, No.4, April1981.

[Tsichritzis 82]
Tsichritzis, D., "Form Management", Communications of the ACM, Vol.

25, No. 7, July 1982.

[Ullman 80]
Ullman, J., Principles of Database Systems, Computer Science Press,

1980.

[\Vaters 82]
Waters, R. C., "The Programmer's Apprentice: Knowledge Based Pro

gram Editing", IEEE Transactions on Software Engineering, Vol. SE-8,

No. 1, January 1982.

[Woodfill, et al. 79]
Woodfill, J., Whyte, N., Ubell, M., Siegal, P., Ries, D., Meyer, M.,

Hawthorn, P., Epstein, B., Berman, R., and Allman, E., "INGRES 6.2

Reference Manual", Electronics Research Laboratory, University of Cali

fornia, Berkeley, Ca., Memo 79/43, May 1979.

[Wulf, London, and Shaw 76]
Wulf, W., London, R., and Shaw, M., "An Introduction to the Construc

tion and Verification of Alp hard Programs", IEEE Transactions on

Software Engineering, Vol. SE-2, No. 4, December 1976.

[Zaniolo 83]
Zaniolo, C., "The Database Language GEM", Proceedings of the 1983

ACAf-SIGMOD International Conference on Management of Data, San

Jose, California, May 1983.

